终身会员
搜索
    上传资料 赚现金

    2024年新高考数学一轮复习题型归类与强化测试专题30正弦定理和余弦定理(教师版)

    立即下载
    加入资料篮
    2024年新高考数学一轮复习题型归类与强化测试专题30正弦定理和余弦定理(教师版)第1页
    2024年新高考数学一轮复习题型归类与强化测试专题30正弦定理和余弦定理(教师版)第2页
    2024年新高考数学一轮复习题型归类与强化测试专题30正弦定理和余弦定理(教师版)第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年新高考数学一轮复习题型归类与强化测试专题30正弦定理和余弦定理(教师版)

    展开

    这是一份2024年新高考数学一轮复习题型归类与强化测试专题30正弦定理和余弦定理(教师版),共19页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。
    【考纲要求】
    1.掌握正弦定理、余弦定理及其变形.
    2.能利用正弦定理、余弦定理解决一些简单的三角形度量问题.
    【考点预测】
    1.正弦定理与余弦定理
    2.三角形中常用的面积公式
    (1)S=eq \f(1,2)aha(ha表示边a上的高);
    (2)S=eq \f(1,2)absin C=eq \f(1,2)acsin B=eq \f(1,2)bcsin A;
    (3)S=eq \f(1,2)r(a+b+c)(r为三角形的内切圆半径).
    3.三角形解的判断
    【常用结论】
    1.三角形内角和定理
    在△ABC中,A+B+C=π;
    变形:eq \f(A+B,2)=eq \f(π,2)-eq \f(C,2).
    2.三角形中的三角函数关系
    (1)sin(A+B)=sin C.
    (2)cs(A+B)=-cs C.
    (3)sineq \f(A+B,2)=cs eq \f(C,2).
    (4)cseq \f(A+B,2)=sin eq \f(C,2).
    3.三角形中的射影定理
    在△ABC中,a=bcs C+ccs B;
    b=acs C+ccs A;
    c=bcs A+acs B.
    【方法技巧】
    1.正弦定理、余弦定理的作用是在已知三角形部分元素的情况下求解其余元素,基本思想是方程思想,即根据正弦定理、余弦定理列出关于未知元素的方程,通过解方程求得未知元素.
    2.正弦定理、余弦定理的另一个作用是实现三角形边角关系的互化,解题时可以把已知条件化为角的三角函数关系,也可以把已知条件化为三角形边的关系.
    3.判定三角形形状的途径:
    (1)化边为角,通过三角变换找出角之间的关系;
    (2)化角为边,通过代数变形找出边之间的关系,正(余)弦定理是转化的桥梁.
    4.无论使用哪种方法,都不要随意约掉公因式,要移项提取公因式,否则会有漏掉一种形状的可能.注意挖掘隐含条件,重视角的范围对三角函数值的限制.
    5.与三角形面积有关问题的解题策略:
    (1)利用正弦、余弦定理解三角形,求出三角形的相关边、角之后,直接求三角形的面积;
    (2)把面积作为已知条件之一,与正弦、余弦定理结合求出三角形的其他量.
    二、【题型归类】
    【题型一】利用正弦定理、余弦定理解三角形
    【典例1】已知在△ABC中,c=2bcs B,C=eq \f(2π,3).
    (1)求B的大小;
    (2)在下列三个条件中选择一个作为已知,使△ABC存在且唯一确定,并求出BC边上的中线的长度.
    ①c=eq \r(2)b;②周长为4+2eq \r(3);③面积为S△ABC=eq \f(3\r(3),4).
    【解析】(1)∵c=2bcs B,
    则由正弦定理可得sin C=2sin Bcs B,
    ∴sin 2B=sin eq \f(2π,3)=eq \f(\r(3),2),∵C=eq \f(2π,3),
    ∴B∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,3))),2B∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(2π,3))),
    ∴2B=eq \f(π,3),解得B=eq \f(π,6).
    (2)若选择①:由正弦定理结合(1)可得
    eq \f(c,b)=eq \f(sin C,sin B)=eq \f(\f(\r(3),2),\f(1,2))=eq \r(3),
    与c=eq \r(2)b矛盾,故这样的△ABC不存在;
    若选择②:由(1)可得A=eq \f(π,6),
    设△ABC的外接圆半径为R,
    则由正弦定理可得a=b=2Rsin eq \f(π,6)=R,
    c=2Rsin eq \f(2π,3)=eq \r(3)R,
    则周长为a+b+c=2R+eq \r(3)R=4+2eq \r(3),
    解得R=2,则a=2,c=2eq \r(3),
    由余弦定理可得BC边上的中线的长度为
    eq \r(2\r(3)2+12-2×2\r(3)×1×cs \f(π,6))=eq \r(7);
    若选择③:由(1)可得A=eq \f(π,6),即a=b,
    则S△ABC=eq \f(1,2)absin C=eq \f(1,2)a2×eq \f(\r(3),2)=eq \f(3\r(3),4),
    解得a=eq \r(3),
    则由余弦定理可得BC边上的中线的长度为
    eq \r(b2+\b\lc\(\rc\)(\a\vs4\al\c1(\f(a,2)))2-2×b×\f(a,2)×cs \f(2π,3))
    =eq \r(3+\f(3,4)+\r(3)×\f(\r(3),2))=eq \f(\r(21),2).
    【典例2】记△ABC的内角A,B,C的对边分别为a,b,c.已知b2=ac,点D在边AC上,BDsin ∠ABC=asin C.
    (1)证明:BD=b.
    (2)若AD=2DC,求cs ∠ABC.
    【解析】(1)证明 因为BDsin∠ABC=asin C,
    所以由正弦定理得,BD·b=ac,
    又b2=ac,所以BD·b=b2,
    又b>0,所以BD=b.
    (2)解 法一 如图所示,过点D作DE∥BC交AB于E,
    因为AD=2DC,
    所以eq \f(AE,EB)=eq \f(AD,DC)=2,
    eq \f(DE,BC)=eq \f(2,3),
    所以BE=eq \f(c,3),DE=eq \f(2,3)a.
    在△BDE中,cs∠BED=eq \f(BE2+DE2-BD2,2BE·DE)
    =eq \f(\f(c2,9)+\f(4a2,9)-b2,2·\f(c,3)·\f(2a,3))=eq \f(c2+4a2-9b2,4ac)
    =eq \f(c2+4a2-9ac,4ac).
    在△ABC中,cs∠ABC=eq \f(AB2+BC2-AC2,2AB·BC)
    =eq \f(c2+a2-b2,2ac)=eq \f(c2+a2-ac,2ac).
    因为∠BED=π-∠ABC,
    所以cs∠BED=-cs ∠ABC,
    所以eq \f(c2+4a2-9ac,4ac)=-eq \f(c2+a2-ac,2ac),
    化简得3c2+6a2-11ac=0,
    方程两边同时除以a2,
    得3eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(c,a)))eq \s\up12(2)-11eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(c,a)))+6=0,
    解得eq \f(c,a)=eq \f(2,3)或eq \f(c,a)=3.
    当eq \f(c,a)=eq \f(2,3),即c=eq \f(2,3)a时,cs ∠ABC=eq \f(c2+a2-ac,2ac)=eq \f(\f(4,9)a2+a2-\f(2,3) a2,\f(4,3)a2)=eq \f(7,12);
    当eq \f(c,a)=3,即c=3a时,
    cs ∠ABC=eq \f(c2+a2-ac,2ac)=eq \f(9a2+a2-3a2,6a2)=eq \f(7,6)>1(舍).
    综上,cs ∠ABC=eq \f(7,12).
    法二 因为eq \(AD,\s\up6(→))=2eq \(DC,\s\up6(→)),
    所以eq \(BD,\s\up6(→))=eq \f(2,3)eq \(BC,\s\up6(→))+eq \f(1,3)eq \(BA,\s\up6(→)),
    所以eq \(BD,\s\up6(→))2=eq \f(4,9)eq \(BC,\s\up6(→))2+eq \f(4,9)eq \(BC,\s\up6(→))·eq \(BA,\s\up6(→))+eq \f(1,9)eq \(BA,\s\up6(→))2.
    因为BD=b,
    所以b2=eq \f(4,9)a2+eq \f(4,9)accs∠ABC+eq \f(1,9)c2,
    所以9b2=4a2+4accs∠ABC+c2.①
    又b2=ac=a2+c2-2accs∠ABC,②
    所以①-②,得8ac=3a2+6accs∠ABC,
    所以cs∠ABC=eq \f(8ac-3a2,6ac)=eq \f(4,3)-eq \f(a,2c).
    由①②知eq \b\lc\{(\a\vs4\al\c1(9=4×\f(a,c)+4cs∠ABC+\f(c,a),,1=\f(a,c)+\f(c,a)-2cs∠ABC,))
    所以11=eq \f(6a,c)+eq \f(3c,a),
    所以6eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(a,c)))eq \s\up12(2)-11×eq \f(a,c)+3=0,解得eq \f(a,c)=eq \f(3,2)或eq \f(a,c)=eq \f(1,3).
    当eq \f(a,c)=eq \f(3,2)时,cs∠ABC=eq \f(4,3)-eq \f(3,4)=eq \f(7,12);
    当eq \f(a,c)=eq \f(1,3)时,cs∠ABC=eq \f(4,3)-eq \f(1,6)=eq \f(7,6)(不合题意,舍去).
    所以cs∠ABC=eq \f(7,12).
    【典例3】在△ABC中,内角A,B,C的对边分别为a,b,c,已知bsin C+asin A=bsin B+csin C.
    (1)求A;
    (2)设D是线段BC的中点,若c=2,AD=eq \r(13),求a.
    【解析】(1)根据正弦定理,
    由bsin C+asin A=bsin B+csin C,
    可得bc+a2=b2+c2,
    即bc=b2+c2-a2,
    由余弦定理可得,cs A=eq \f(b2+c2-a2,2bc)=eq \f(1,2),
    因为A为三角形内角,所以A=eq \f(π,3).
    (2)因为D是线段BC的中点,c=2,AD=eq \r(13),
    所以∠ADB+∠ADC=π,
    则cs∠ADB+cs∠ADC=0,
    所以eq \f(AD2+BD2-AB2,2AD·BD)+eq \f(AD2+DC2-AC2,2AD·DC)=0,
    即eq \f(13+\f(a2,4)-22,2\r(13)·\f(a,2))+eq \f(13+\f(a2,4)-b2,2\r(13)·\f(a,2))=0,
    整理得a2=2b2-44,
    又a2=b2+c2-2bccs A=b2+4-2b,
    所以b2+4-2b=2b2-44,
    解得b=6或b=-8(舍),
    因此a2=2b2-44=28,
    所以a=2eq \r(7).
    【题型二】判断三角形的形状
    【典例1】设△ABC的内角A,B,C所对的边分别为a,b,c,若bcs C+ccs B=asin A,则△ABC的形状为( )
    A.锐角三角形 B.直角三角形
    C.钝角三角形 D.不确定
    【解析】由正弦定理得sin Bcs C+sin Ccs B=sin2A,
    ∴sin(B+C)=sin2A,
    即sin(π-A)=sin2A,sin A=sin2A.
    ∵A∈(0,π),∴sin A>0,∴sin A=1,
    即A=eq \f(π,2),∴△ABC为直角三角形.
    故选B.
    【典例2】(多选)已知a,b,c分别是△ABC三个内角A,B,C的对边,下列四个命题中正确的是( )
    A.若tan A+tan B+tan C>0,则△ABC是锐角三角形
    B.若acs A=bcs B,则△ABC是等腰三角形
    C.若bcs C+ccs B=b,则△ABC是等腰三角形
    D.若eq \f(a,cs A)=eq \f(b,cs B)=eq \f(c,cs C),则△ABC是等边三角形
    【解析】∵tan A+tan B+tan C=tan Atan Btan C>0,
    ∴A,B,C均为锐角,∴选项A正确;
    由acs A=bcs B及正弦定理,可得sin 2A=sin 2B,
    ∴A=B或A+B=eq \f(π,2),
    ∴△ABC是等腰三角形或直角三角形,∴选项B错;
    由bcs C+ccs B=b及正弦定理,
    可知sin Bcs C+sin Ccs B=sin B,
    ∴sin A=sin B,
    ∴A=B,∴选项C正确;
    由已知和正弦定理,易知tan A=tan B=tan C,
    ∴选项D正确.
    故选ACD.
    【典例3】在△ABC中,a∶b∶c=3∶5∶7,那么△ABC是( )
    A.直角三角形 B.钝角三角形
    C.锐角三角形 D.非钝角三角形
    【解析】因为a∶b∶c=3∶5∶7,所以可设a=3t,b=5t,c=7t,由余弦定理可得cs C=eq \f(9t2+25t2-49t2,2×3t×5t)=-eq \f(1,2),所以C=120°,△ABC是钝角三角形.
    故选B.
    【题型三】与三角形面积有关的问题
    【典例1】△ABC的内角A,B,C的对边分别为a,b,c,若b=6,a=2c,B=eq \f(π,3),则△ABC的面积为________.
    【解析】法一:因为a=2c,b=6,B=eq \f(π,3),所以由余弦定理b2=a2+c2-2accs B,得62=(2c)2+c2-2×2c×ccs eq \f(π,3),得c=2eq \r(3),所以a=4eq \r(3),所以△ABC的面积S=eq \f(1,2)acsin B=eq \f(1,2)×4eq \r(3)×2eq \r(3)×sin eq \f(π,3)=6eq \r(3).
    法二:因为a=2c,b=6,B=eq \f(π,3),所以由余弦定理b2=a2+c2-2accs B,得62=(2c)2+c2-2×2c×ccs eq \f(π,3),得c=2eq \r(3),所以a=4eq \r(3),所以a2=b2+c2,所以A=eq \f(π,2),所以△ABC的面积S=eq \f(1,2)×2eq \r(3)×6=6eq \r(3).
    【典例2】在△ABC中,A,B,C所对的边分别为a,b,c,已知a2+b2-c2=eq \r(3)ab,且acsin B=2eq \r(3)sin C,则△ABC的面积为________.
    【解析】因为a2+b2-c2=eq \r(3)ab,所以由余弦定理得cs C=eq \f(a2+b2-c2,2ab)=eq \f(\r(3)ab,2ab)=eq \f(\r(3),2),又0<C<π,所以C=eq \f(π,6).因为acsin B=2eq \r(3)sin C,结合正弦定理可得abc=2eq \r(3)c,所以ab=2eq \r(3).故S△ABC=eq \f(1,2)absin C=eq \f(1,2)×2eq \r(3)sineq \f(π,6)=eq \f(\r(3),2).
    【典例3】在△ABC中,角A,B,C的对边分别为a,b,c,已知csineq \b\lc\(\rc\)(\a\vs4\al\c1(A+\f(π,3)))-asin C=0.
    (1)求角A的值;
    (2)若△ABC的面积为eq \r(3),周长为6,求a的值.
    【解析】(1)因为csineq \b\lc\(\rc\)(\a\vs4\al\c1(A+\f(π,3)))-asin C=0,
    所以由正弦定理得sin Ceq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)sin A+\f(\r(3),2)cs A))-sin A·sin C=0.
    因为sin C>0,
    所以eq \f(\r(3),2)cs A-eq \f(1,2)sin A=0,即tan A=eq \r(3),
    因为A∈(0,π),所以A=eq \f(π,3).
    (2)因为△ABC的面积为eq \r(3),所以eq \f(1,2)bcsin A=eq \r(3),得bc=4.
    由余弦定理a2=b2+c2-2bccs A,得a2=b2+c2-bc=(b+c)2-3bc=(b+c)2-12,
    因为△ABC的周长为6,即a+b+c=6,
    所以a2=(6-a)2-12,
    所以a=2.
    三、【培优训练】
    【训练一】我国南宋著名数学家秦九韶提出了由三角形三边求三角形面积的“三斜求积”公式.设△ABC三个内角A,B,C所对的边分别为a,b,c,面积为S,则“三斜求积”公式为S=eq \r(\f(1,4)\b\lc\[\rc\](\a\vs4\al\c1(a2c2-\b\lc\(\rc\)(\a\vs4\al\c1(\f(a2+c2-b2,2)))\s\up12(2)))).若a2sin C=2sin A,(a+c)2=6+b2,则用“三斜求积”公式求得的△ABC的面积为( )
    A.eq \r(3) B.1
    C.eq \f(\r(3),2) D.eq \f(1,2)
    【解析】因为a2sin C=2sin A,所以a2c=2a.又a>0,所以ac=2.
    因为(a+c)2=6+b2,所以a2+c2+2ac=6+b2,所以a2+c2-b2=6-2ac=6-4=2.所以△ABC的面积为S=eq \r(\f(1,4)×\b\lc\[\rc\](\a\vs4\al\c1(22-\b\lc\(\rc\)(\a\vs4\al\c1(\f(2,2)))\s\up12(2))))=eq \f(\r(3),2).
    故选C.
    【训练二】在△ABC中,角A,B,C所对的边分别为a,b,c,若eq \f(1,tan A),eq \f(1,tan B),eq \f(1,tan C)依次成等差数列,则下列结论中不一定成立的是( )
    A.a,b,c依次成等差数列
    B.eq \r(a),eq \r(b),eq \r(c)依次成等差数列
    C.a2,b2,c2依次成等差数列
    D.a3,b3,c3依次成等差数列
    【解析】在△ABC中,若eq \f(1,tan A),eq \f(1,tan B),eq \f(1,tan C)依次成等差数列,则eq \f(2,tan B)=eq \f(1,tan A)+eq \f(1,tan C).所以eq \f(2cs B,sin B)=eq \f(cs A,sin A)+eq \f(cs C,sin C).利用正弦定理和余弦定理得,2·eq \f(a2+c2-b2,2abc)=eq \f(b2+c2-a2,2abc)+eq \f(a2+b2-c2,2abc),整理得2b2=a2+c2,即a2,b2,c2依次成等差数列.此时对等差数列a2,b2,c2的每一项取相同的运算得到数列a,b,c或eq \r(a),eq \r(b),eq \r(c)或a3,b3,c3,这些数列一般都不可能是等差数列,除非a=b=c.故都不一定成立.
    故选ABD.
    【训练三】△ABC的内角A,B,C所对的边分别为a,b,c,已知△ABC的面积为eq \f(\r(3),2)accs B,且sin A=3sin C.
    (1)求角B的大小;
    (2)若c=2,AC的中点为D,求BD的长.
    【解析】(1)因为S△ABC=eq \f(1,2)acsin B=eq \f(\r(3),2)accs B,
    所以tan B=eq \r(3).
    又0<B<π,所以B=eq \f(π,3).
    (2)sin A=3sin C,由正弦定理得,a=3c,所以a=6.
    由余弦定理得,b2=62+22-2×2×6×cs 60°=28,所以b=2eq \r(7).
    所以cs A=eq \f(b2+c2-a2,2bc)=eq \f((2\r(7))2+22-62,2×2×2\r(7))=-eq \f(\r(7),14).
    因为D是AC的中点,所以AD=eq \r(7).
    所以BD2=AB2+AD2-2AB·ADcs A=22+(eq \r(7))2-2×2×eq \r(7)×eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(\r(7),14)))=13.
    所以BD=eq \r(13).
    【训练四】如图所示,经过村庄A有两条夹角为60°的公路AB,AC,根据规划拟在两条公路之间的区域建一工厂P,分别在两条公路边上建两个仓库M,N(异于村庄A),要求PM=PN=MN=2(单位:千米).如何设计,使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离最远)?
    【解析】设∠AMN=θ,在△AMN中,
    eq \f(MN,sin 60°)=eq \f(AM,sin120°-θ).
    因为MN=2,所以AM=eq \f(4\r(3),3)sin(120°-θ).
    在△APM中,cs∠AMP=cs(60°+θ).
    AP2=AM2+MP2-2AM·MP·cs∠AMP=
    eq \f(16,3)sin2(120°-θ)+4-2×2×eq \f(4\r(3),3)sin(120°-θ)·cs(60°+θ)
    =eq \f(16,3)sin2(θ+60°)-eq \f(16\r(3),3)sin(θ+60°)·cs(θ+60°)+4
    =eq \f(8,3)[1-cs(2θ+120°)]-eq \f(8\r(3),3)sin(2θ+120°)+4
    =-eq \f(8,3)[eq \r(3)sin(2θ+120°)+cs(2θ+120°)]+eq \f(20,3)
    =eq \f(20,3)-eq \f(16,3)sin(2θ+150°),0°a,若△ABC为钝角三角形,则C为钝角,
    由余弦定理可得
    cs C=eq \f(a2+b2-c2,2ab)=eq \f(a2+a+12-a+22,2aa+1)
    =eq \f(a2-2a-3,2aa+1)cs B恒成立
    C.在△ABC中,若acs A=bcs B,则△ABC必是等腰直角三角形
    D.在△ABC中,若B=60°,b2=ac,则△ABC必是等边三角形
    【解析】对于A,在△ABC中,由正弦定理可得eq \f(a,sin A)=eq \f(b,sin B),所以sin A>sin B⇔a>b⇔A>B,故A正确;对于B,在锐角三角形ABC中,A,B∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2))),且A+B>eq \f(π,2),则eq \f(π,2)>A>eq \f(π,2)-B>0,所以sin A>sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-B))=cs B,故B正确;对于C,在△ABC中,由acs A=bcs B,利用正弦定理可得sin 2A=sin 2B,得到2A=2B或2A=π-2B,故A=B或A=eq \f(π,2)-B,即△ABC是等腰三角形或直角三角形,故C错误;对于D,在△ABC中,若B=60°,b2=ac,由余弦定理可得,b2=a2+c2-2accs B,所以ac=a2+c2-ac,即(a-c)2=0,解得a=c.又B=60°,所以△ABC必是等边三角形,故D正确.
    故选ABD.
    11. 某人向正东走了x km后向右转了150°,然后沿新方向走3 km,结果离出发点恰好eq \r(3) km,那么x的值是( )
    A.eq \r(3) B.2eq \r(3) C.3 D.6
    【解析】如图,AB=x,BC=3,AC=eq \r(3),∠ABC=30°.
    由余弦定理得3=x2+9-2×3×x×cs 30°.
    解得x=2eq \r(3)或x=eq \r(3),
    故选AB.
    12. 对于△ABC,有如下判断,其中正确的判断是( )
    A.若cs A=cs B,则△ABC为等腰三角形
    B.若△ABC为锐角三角形,有A+B>eq \f(π,2),则sin A>cs B
    C.若a=8,c=10,B=60°,则符合条件的△ABC有两个
    D.若sin2A+sin2Beq \f(π,2),则eq \f(π,2)>A>eq \f(π,2)-B>0,∴sin A>cs B,故正确;
    对于C,由余弦定理可得b=eq \r(82+102-2×8×10×\f(1,2))=eq \r(84),只有一解,故错误;
    对于D,若sin2A+sin2B

    相关试卷

    2024年新高考数学一轮复习题型归类与强化测试专题30正弦定理和余弦定理(学生版):

    这是一份2024年新高考数学一轮复习题型归类与强化测试专题30正弦定理和余弦定理(学生版),共7页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。

    2024年新高考数学一轮复习题型归类与强化测试专题35复数(教师版):

    这是一份2024年新高考数学一轮复习题型归类与强化测试专题35复数(教师版),共12页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。

    2024年新高考数学一轮复习题型归类与强化测试专题39数列求和(教师版):

    这是一份2024年新高考数学一轮复习题型归类与强化测试专题39数列求和(教师版),共22页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map