所属成套资源:2024年新高考数学一轮复习题型归类与强化测试专题汇总(Word版附解析)
2024年新高考数学一轮复习题型归类与强化测试专题30正弦定理和余弦定理(Word版附解析)
展开
这是一份2024年新高考数学一轮复习题型归类与强化测试专题30正弦定理和余弦定理(Word版附解析),共23页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。
专题30正弦定理和余弦定理
知识梳理
考纲要求
考点预测
常用结论
方法技巧
题型归类
题型一:利用正弦定理、余弦定理解三角形
题型二:判断三角形的形状
题型三:与三角形面积有关的问题
培优训练
训练一:
训练二:
训练三:
训练四:
训练五:
强化测试
单选题:共8题
多选题:共4题
填空题:共4题
解答题:共6题
一、【知识梳理】
【考纲要求】
1.掌握正弦定理、余弦定理及其变形.
2.能利用正弦定理、余弦定理解决一些简单的三角形度量问题.
【考点预测】
1.正弦定理与余弦定理
定理
正弦定理
余弦定理
内容
===2R
a2=b2+c2-2bccos A;
b2=c2+a2-2cacos B;
c2=a2+b2-2abcos C
变形
(1)a=2Rsin A,
b=2Rsin B,
c=2Rsin C;
(2)asin B
=bsin A,
bsin C=csin B,
asin C=csin A
cos A=;
cos B=;
cos C=
2.三角形中常用的面积公式
(1)S=aha(ha表示边a上的高);
(2)S=absin C=acsin B=bcsin A;
(3)S=r(a+b+c)(r为三角形的内切圆半径).
3.三角形解的判断
A为锐角
A为钝角或直角
图形
关系式
a=bsin A
bsin A0,所以BD=b.
(2)解 法一 如图所示,过点D作DE∥BC交AB于E,
因为AD=2DC,
所以==2,
=,
所以BE=,DE=a.
在△BDE中,cos∠BED=
==
=.
在△ABC中,cos∠ABC=
==.
因为∠BED=π-∠ABC,
所以cos∠BED=-cos ∠ABC,
所以=-,
化简得3c2+6a2-11ac=0,
方程两边同时除以a2,
得3-11+6=0,
解得=或=3.
当=,即c=a时,cos ∠ABC===;
当=3,即c=3a时,
cos ∠ABC===>1(舍).
综上,cos ∠ABC=.
法二 因为=2,
所以=+,
所以2=2+·+2.
因为BD=b,
所以b2=a2+accos∠ABC+c2,
所以9b2=4a2+4accos∠ABC+c2.①
又b2=ac=a2+c2-2accos∠ABC,②
所以①-②,得8ac=3a2+6accos∠ABC,
所以cos∠ABC==-.
由①②知
所以11=+,
所以6-11×+3=0,解得=或=.
当=时,cos∠ABC=-=;
当=时,cos∠ABC=-=(不合题意,舍去).
所以cos∠ABC=.
【典例3】在△ABC中,内角A,B,C的对边分别为a,b,c,已知bsin C+asin A=bsin B+csin C.
(1)求A;
(2)设D是线段BC的中点,若c=2,AD=,求a.
【解析】(1)根据正弦定理,
由bsin C+asin A=bsin B+csin C,
可得bc+a2=b2+c2,
即bc=b2+c2-a2,
由余弦定理可得,cos A==,
因为A为三角形内角,所以A=.
(2)因为D是线段BC的中点,c=2,AD=,
所以∠ADB+∠ADC=π,
则cos∠ADB+cos∠ADC=0,
所以+=0,
即+=0,
整理得a2=2b2-44,
又a2=b2+c2-2bccos A=b2+4-2b,
所以b2+4-2b=2b2-44,
解得b=6或b=-8(舍),
因此a2=2b2-44=28,
所以a=2.
【题型二】判断三角形的形状
【典例1】设△ABC的内角A,B,C所对的边分别为a,b,c,若bcos C+ccos B=asin A,则△ABC的形状为( )
A.锐角三角形 B.直角三角形
C.钝角三角形 D.不确定
【解析】由正弦定理得sin Bcos C+sin Ccos B=sin2A,
∴sin(B+C)=sin2A,
即sin(π-A)=sin2A,sin A=sin2A.
∵A∈(0,π),∴sin A>0,∴sin A=1,
即A=,∴△ABC为直角三角形.
故选B.
【典例2】(多选)已知a,b,c分别是△ABC三个内角A,B,C的对边,下列四个命题中正确的是( )
A.若tan A+tan B+tan C>0,则△ABC是锐角三角形
B.若acos A=bcos B,则△ABC是等腰三角形
C.若bcos C+ccos B=b,则△ABC是等腰三角形
D.若==,则△ABC是等边三角形
【解析】∵tan A+tan B+tan C=tan Atan Btan C>0,
∴A,B,C均为锐角,∴选项A正确;
由acos A=bcos B及正弦定理,可得sin 2A=sin 2B,
∴A=B或A+B=,
∴△ABC是等腰三角形或直角三角形,∴选项B错;
由bcos C+ccos B=b及正弦定理,
可知sin Bcos C+sin Ccos B=sin B,
∴sin A=sin B,
∴A=B,∴选项C正确;
由已知和正弦定理,易知tan A=tan B=tan C,
∴选项D正确.
故选ACD.
【典例3】在△ABC中,a∶b∶c=3∶5∶7,那么△ABC是( )
A.直角三角形 B.钝角三角形
C.锐角三角形 D.非钝角三角形
【解析】因为a∶b∶c=3∶5∶7,所以可设a=3t,b=5t,c=7t,由余弦定理可得cos C==-,所以C=120°,△ABC是钝角三角形.
故选B.
【题型三】与三角形面积有关的问题
【典例1】(2019·高考全国卷Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,若b=6,a=2c,B=,则△ABC的面积为________.
【解析】法一:因为a=2c,b=6,B=,所以由余弦定理b2=a2+c2-2accos B,得62=(2c)2+c2-2×2c×ccos ,得c=2,所以a=4,所以△ABC的面积S=acsin B=×4×2×sin =6.
法二:因为a=2c,b=6,B=,所以由余弦定理b2=a2+c2-2accos B,得62=(2c)2+c2-2×2c×ccos ,得c=2,所以a=4,所以a2=b2+c2,所以A=,所以△ABC的面积S=×2×6=6.
【典例2】在△ABC中,A,B,C所对的边分别为a,b,c,已知a2+b2-c2=ab,且acsin B=2sin C,则△ABC的面积为________.
【解析】因为a2+b2-c2=ab,所以由余弦定理得cos C===,又0<C<π,所以C=.因为acsin B=2sin C,结合正弦定理可得abc=2c,所以ab=2.故S△ABC=absin C=×2sin=.
【典例3】在△ABC中,角A,B,C的对边分别为a,b,c,已知csin-asin C=0.
(1)求角A的值;
(2)若△ABC的面积为,周长为6,求a的值.
【解析】(1)因为csin-asin C=0,
所以由正弦定理得sin C-sin A·sin C=0.
因为sin C>0,
所以cos A-sin A=0,即tan A=,
因为A∈(0,π),所以A=.
(2)因为△ABC的面积为,所以bcsin A=,得bc=4.
由余弦定理a2=b2+c2-2bccos A,得a2=b2+c2-bc=(b+c)2-3bc=(b+c)2-12,
因为△ABC的周长为6,即a+b+c=6,
所以a2=(6-a)2-12,
所以a=2.
三、【培优训练】
【训练一】我国南宋著名数学家秦九韶提出了由三角形三边求三角形面积的“三斜求积”公式.设△ABC三个内角A,B,C所对的边分别为a,b,c,面积为S,则“三斜求积”公式为S=.若a2sin C=2sin A,(a+c)2=6+b2,则用“三斜求积”公式求得的△ABC的面积为( )
A. B.1
C. D.
【解析】因为a2sin C=2sin A,所以a2c=2a.又a>0,所以ac=2.
因为(a+c)2=6+b2,所以a2+c2+2ac=6+b2,所以a2+c2-b2=6-2ac=6-4=2.所以△ABC的面积为S==.
故选C.
【训练二】在△ABC中,角A,B,C所对的边分别为a,b,c,若,,依次成等差数列,则下列结论中不一定成立的是( )
A.a,b,c依次成等差数列
B.,,依次成等差数列
C.a2,b2,c2依次成等差数列
D.a3,b3,c3依次成等差数列
【解析】在△ABC中,若,,依次成等差数列,则=+.所以=+.利用正弦定理和余弦定理得,2·=+,整理得2b2=a2+c2,即a2,b2,c2依次成等差数列.此时对等差数列a2,b2,c2的每一项取相同的运算得到数列a,b,c或,,或a3,b3,c3,这些数列一般都不可能是等差数列,除非a=b=c.故都不一定成立.
故选ABD.
【训练三】△ABC的内角A,B,C所对的边分别为a,b,c,已知△ABC的面积为accos B,且sin A=3sin C.
(1)求角B的大小;
(2)若c=2,AC的中点为D,求BD的长.
【解析】(1)因为S△ABC=acsin B=accos B,
所以tan B=.
又0<B<π,所以B=.
(2)sin A=3sin C,由正弦定理得,a=3c,所以a=6.
由余弦定理得,b2=62+22-2×2×6×cos 60°=28,所以b=2.
所以cos A===-.
因为D是AC的中点,所以AD=.
所以BD2=AB2+AD2-2AB·ADcos A=22+()2-2×2××=13.
所以BD=.
【训练四】如图所示,经过村庄A有两条夹角为60°的公路AB,AC,根据规划拟在两条公路之间的区域建一工厂P,分别在两条公路边上建两个仓库M,N(异于村庄A),要求PM=PN=MN=2(单位:千米).如何设计,使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离最远)?
【解析】设∠AMN=θ,在△AMN中,
=.
因为MN=2,所以AM=sin(120°-θ).
在△APM中,cos∠AMP=cos(60°+θ).
AP2=AM2+MP2-2AM·MP·cos∠AMP=
sin2(120°-θ)+4-2×2×sin(120°-θ)·cos(60°+θ)
=sin2(θ+60°)-sin(θ+60°)·cos(θ+60°)+4
=[1-cos(2θ+120°)]-sin(2θ+120°)+4
=-[sin(2θ+120°)+cos(2θ+120°)]+
=-sin(2θ+150°),0°a,若△ABC为钝角三角形,则C为钝角,
由余弦定理可得
cos C==
=cos B恒成立
C.在△ABC中,若acos A=bcos B,则△ABC必是等腰直角三角形
D.在△ABC中,若B=60°,b2=ac,则△ABC必是等边三角形
【解析】对于A,在△ABC中,由正弦定理可得=,所以sin A>sin B⇔a>b⇔A>B,故A正确;对于B,在锐角三角形ABC中,A,B∈,且A+B>,则>A>-B>0,所以sin A>sin=cos B,故B正确;对于C,在△ABC中,由acos A=bcos B,利用正弦定理可得sin 2A=sin 2B,得到2A=2B或2A=π-2B,故A=B或A=-B,即△ABC是等腰三角形或直角三角形,故C错误;对于D,在△ABC中,若B=60°,b2=ac,由余弦定理可得,b2=a2+c2-2accos B,所以ac=a2+c2-ac,即(a-c)2=0,解得a=c.又B=60°,所以△ABC必是等边三角形,故D正确.
故选ABD.
11. 某人向正东走了x km后向右转了150°,然后沿新方向走3 km,结果离出发点恰好 km,那么x的值是( )
A. B.2 C.3 D.6
【解析】如图,AB=x,BC=3,AC=,∠ABC=30°.
由余弦定理得3=x2+9-2×3×x×cos 30°.
解得x=2或x=,
故选AB.
12. 对于△ABC,有如下判断,其中正确的判断是( )
A.若cos A=cos B,则△ABC为等腰三角形
B.若△ABC为锐角三角形,有A+B>,则sin A>cos B
C.若a=8,c=10,B=60°,则符合条件的△ABC有两个
D.若sin2A+sin2B,则>A>-B>0,∴sin A>cos B,故正确;
对于C,由余弦定理可得b==,只有一解,故错误;
对于D,若sin2A+sin2B
相关试卷
这是一份2024年新高考数学一轮复习题型归类与强化测试专题30正弦定理和余弦定理(教师版),共19页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。
这是一份2024年新高考数学一轮复习题型归类与强化测试专题30正弦定理和余弦定理(学生版),共7页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。
这是一份2024年新高考数学一轮复习题型归类与强化测试专题48直线的方程(Word版附解析),共31页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。