所属成套资源:2024年新高考数学一轮复习题型归类与强化测试专题全套
2024年新高考数学一轮复习题型归类与强化测试专题12函数的图象(教师版)
展开
这是一份2024年新高考数学一轮复习题型归类与强化测试专题12函数的图象(教师版),共21页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。
【考纲要求】
1.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.
2.会画简单的函数图象.
3.会运用函数图象研究函数的性质,解决方程解的个数与不等式解的问题.
【考点预测】
1.利用描点法作函数的图象
步骤:(1)确定函数的定义域;(2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);(4)列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.
2.利用图象变换法作函数的图象
(1)平移变换
(2)对称变换
y=f(x)的图象eq \(――→,\s\up7(关于x轴对称))y=-f(x)的图象;
y=f(x)的图象eq \(――→,\s\up7(关于y轴对称))y=f(-x)的图象;
y=f(x)的图象eq \(――→,\s\up7(关于原点对称))y=-f(-x)的图象;
y=ax(a>0,且a≠1)的图象eq \(――→,\s\up17(关于直线),\s\d15(y=x对称))y=lgax(a>0,且a≠1)的图象.
(3)伸缩变换
y=f(x)eq \(――――――――――――→,\s\up17(纵坐标不变),\s\d15(各点横坐标变为原来的\f(1,a)(a>0)倍))y=f(ax).
y=f(x)eq \(――――――――――――→,\s\up17(横坐标不变),\s\d15(各点纵坐标变为原来的A(A>0)倍))y=Af(x).
(4)翻折变换
y=f(x)的图象eq \(――――――――――――→,\s\up17(x轴下方部分翻折到上方),\s\d15(x轴及上方部分不变))y=|f(x)|的图象;
y=f(x)的图象eq \(――――――――――――→,\s\up17(y轴右侧部分翻折到左侧),\s\d15(原y轴左侧部分去掉,右侧不变))y=f(|x|)的图象.
【常用结论】
1.记住几个重要结论
(1)函数y=f(x)与y=f(2a-x)的图象关于直线x=a对称.
(2)函数y=f(x)与y=2b-f(2a-x)的图象关于点(a,b)中心对称.
(3)若函数y=f(x)对定义域内任意自变量x满足:f(a+x)=f(a-x),则函数y=f(x)的图象关于直线x=a对称.
2.图象的左右平移仅仅是相对于x而言,如果x的系数不是1,常需把系数提出来,再进行变换.
3.图象的上下平移仅仅是相对于y而言的,利用“上加下减”进行.
【方法技巧】
1.描点法作图:当函数解析式(或变形后的解析式)是熟悉的基本函数时,就可根据这些函数的特征描出图象的关键点直接作出.
2.图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.
3.抓住函数的性质,定性分析:
(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;
(2)从函数的单调性,判断图象的变化趋势;
(3)从周期性,判断图象的循环往复;
(4)从函数的奇偶性,判断图象的对称性.
4.抓住函数的特征,定量计算:从函数的特征点,利用特征点、特殊值的计算分析解决问题.
5.根据实际背景、图形判断函数图象的两种方法
(1)定量计算法:根据题目所给条件确定函数解析式,从而判断函数图象.
(2)定性分析法:采用“以静观动”,即判断动点处于不同的特殊的位置时图象的变化特征,从而利用排除法做出选择.
6.利用函数的图象研究函数的性质
对于已知或易画出其在给定区间上图象的函数,其性质(单调性、奇偶性、周期性、最值(值域)、零点)常借助于图象研究,但一定要注意性质与图象特征的对应关系.
7.利用函数的图象可解决方程和不等式的求解问题,如判断方程是否有解,有多少个解.数形结合是常用的思想方法.不等式的求解可转化为两函数的上下关系问题.
二、【题型归类】
【题型一】作函数的图象
【典例1】作出下列函数的图象:
(1)y=x2-2|x|-1;
(2)y=|2x-2|.
【解析】(1)y=eq \b\lc\{(\a\vs4\al\c1(x2-2x-1,x≥0,,x2+2x-1,x<0.)) 其图象如图(1).
(2)首先作出y=2x的图象,再将图象向下平移2个单位,最后将x轴下方的图象翻折到x轴上方即可,图(2)即为所求.
【典例2】作出下列函数的图象:
(1)y=|lgx|;
(2)y=eq \f(2x-1,x-1).
【解析】(1)y=|lgx|=eq \b\lc\{(\a\vs4\al\c1(lgx, x>1,,-lgx,0<x<1,)) 其图象如图(1).
(2)∵y=eq \f(2x-1,x-1)=eq \f(2(x-1)+1,x-1)=2+eq \f(1,x-1).
定义域为(-∞,1)∪(1,+∞).
∴把y=eq \f(1,x)的图象向右平移1个单位得y=eq \f(1,x-1)的图象;再把y=eq \f(1,x-1)的图象向上平移2个单位可得y=2+eq \f(1,x-1)的图象,如图(2)所示.
【典例3】作出下列函数的图象:
(1)y=2-|x|;
(2)y=sin|x|.
【解析】(1)先作出y=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))x的图象,保留y=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))x图象中x≥0的部分,再作出y=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))x的图象中x>0部分关于y轴的对称部分,即得y=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))|x|的图象,如图①实线部分.
图① 图②
(2)当x≥0时,y=sin|x|与y=sin x的图象完全相同,又y=sin|x|为偶函数,图象关于y轴对称,其图象如图②.
【题型二】函数图象的识别
【典例1】函数f(x)=eq \f(ax+b,(x+c)2)的图象如图所示,则下列结论成立的是( )
A.a>0,b>0,c0
C.a0,c<0
D.a<0,b<0,c<0
【解析】由f(x)=eq \f(ax+b,(x+c)2)及图象可知,x≠-c,-c>0,则c<0;当x=0时,f(0)=eq \f(b,c2)>0,所以b>0;当y=0,ax+b=0,所以x=-eq \f(b,a)>0,所以a<0.故a<0,b>0,c<0.故选C.
【典例2】已知函数y=lga(x+c)(a,c为常数,其中a>0,a≠1)的图象如图所示,则下列结论正确的是( )
A.a>1,c>1B.a>1,0
相关试卷
这是一份2024年新高考数学一轮复习题型归类与强化测试专题12函数的图象(学生版),共12页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。
这是一份2024年新高考数学一轮复习题型归类与强化测试专题28三角函数的图象与性质(教师版),共23页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。
这是一份2024年新高考数学一轮复习题型归类与强化测试专题35复数(教师版),共12页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。