终身会员
搜索
    上传资料 赚现金

    最新中考几何专项复习专题16 几何最值之瓜豆原理知识精讲

    立即下载
    加入资料篮
    中考几何专项复习专题16  几何最值之瓜豆原理知识精讲第1页
    中考几何专项复习专题16  几何最值之瓜豆原理知识精讲第2页
    中考几何专项复习专题16  几何最值之瓜豆原理知识精讲第3页
    还剩4页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    最新中考几何专项复习专题16 几何最值之瓜豆原理知识精讲

    展开

    这是一份最新中考几何专项复习专题16 几何最值之瓜豆原理知识精讲,共7页。


    策略一 建构高效的课堂教学模式-----先学后教,当堂训练。
    高效的课堂教学模式是保证高效的复习效果的前提,学生在教师的指导和辅导下进行先自学、探究和及时训练,获得知识、发展能力的一种教学模式。
    策略二 专题内容的设计应遵循教与学的认知规律和学生心理发展规律,凸显方法规律,由简单到复杂,由特殊到一般,再由一般到特殊
    总结规律,推广一般。从一般到特殊:抛砖引玉,解决问题。
    策略三 设计专题内容时考虑建立几何模型,体现思想方法,让学生驾轻就熟,化难为易,化繁为简。
    几何,常常因为图形变化多端,方法多种多样而被称为数学中的变形金刚。题目千变万化,但万变不离其宗。
    几何最值之瓜豆原理知识精讲
    初中数学有一类动态问题叫做主从联动,这类问题应该说是非常出题,好多优秀老师都在研究它,原因是它在很多名校模考的时候经常出现,有的老师叫他瓜豆原理,个人理解可能是种瓜得瓜种豆得豆的意思吧,主动点运动的轨迹是什么,则从动点的轨迹就是什么。也有的老师叫他旋转相似,或者手拉手。我感觉这类问题在解答的时候需要有轨迹思想,就是先要明确主动点的轨迹,然后要搞清楚主动点和从动点的关系,进而确定从动点的轨迹来解决问题,但在解答问题时,要符合解不超纲的原则,所以最后解决问题还是用到了旋转相似的知识,也就是动态手拉手模型,下面整理一些题目来集中训练一下这类题目,希望对你能有所帮助.
    涉及的知识和方法:
    知识:①相似;②三角形的两边之和大于第三边;③点到直线之间的距离垂线段最短;④点到圆上点共线有最值。
    方法:第一步:找主动点的轨迹 ;第二步:找从动点与主动点的关系;第三步:找主动点的起点和终点;第四步:通过相似确定从动点的轨迹,第五步:根据轨迹确定点线、点圆最值
    在此类题目中,题目或许先描述的是主动点P,但最终问题问的可以是另一点Q(从动点),根据P、Q之间存在某种联系,从P点出发探讨Q点运动轨迹并求出最值。
    一、轨迹之圆篇
    例1:如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.
    考虑:当点P在圆O上运动时,Q点轨迹是?
    分析观察动图可知点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?
    考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.
    结论:确定Q点轨迹圆即确定其圆心与半径,
    由A、Q、P始终共线可得:A、M、O三点共线,
    由Q为AP中点可得:AM=1/2AO.
    Q点轨迹相当于是P点轨迹成比例缩放.
    根据动点之间的相对位置关系分析圆心的相对位置关系;
    根据动点之间的数量关系分析轨迹圆半径数量关系.
    例2:如图,P是圆O上一个动点,A为定点,连接AP,作AQ⊥AP且AQ=AP.
    考虑:当点P在圆O上运动时,Q点轨迹是?

    分析Q点轨迹是个圆,可理解为将AP绕点A逆时针旋转90°得AQ,故Q点轨迹与P点轨迹都是圆.接下来确定圆心与半径.
    考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;
    考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.
    即可确定圆M位置,任意时刻均有△APO≌△AQM.
    例3:如图,△APQ是直角三角形,∠PAQ=90°且AP=2AQ,当P在圆O运动时,Q点轨迹是?
    分析考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;
    考虑AP:AQ=2:1,可得Q点轨迹圆圆心M满足AO:AM=2:1.
    即可确定圆M位置,任意时刻均有△APO∽△AQM,且相似比为2.
    模型总结
    为了便于区分动点P、Q,可称点P为“主动点”,点Q为“从动点”.
    此类问题的必要条件:两个定量
    主动点、从动点与定点连线的夹角是定量(∠PAQ是定值);
    主动点、从动点到定点的距离之比是定量(AP:AQ是定值).
    结论(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:
    ∠PAQ=∠OAM;
    (2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:
    AP:AQ=AO:AM,也等于两圆半径之比.
    按以上两点即可确定从动点轨迹圆,Q与P的关系相当于旋转+伸缩.
    古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”.
    思考1:如图,P是圆O上一个动点,A为定点,连接AP,以AP为一边作等边△APQ.
    考虑:当点P在圆O上运动时,Q点轨迹是?
    分析Q点满足(1)∠PAQ=60°;(2)AP=AQ,故Q点轨迹是个圆:
    考虑∠PAQ=60°,可得Q点轨迹圆圆心M满足∠MAO=60°;
    考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.
    即可确定圆M位置,任意时刻均有△APO≌△AQM.
    小结可以理解AQ由AP旋转得来,故圆M亦由圆O旋转得来,旋转角度与缩放比例均等于AP与AQ的位置和数量关系.
    思考2如图,P是圆O上一个动点,A为定点,连接AP,以AP为斜边作等腰直角△APQ.
    考虑:当点P在圆O上运动时,如何作出Q点轨迹?
    分析Q点满足(1)∠PAQ=45°;(2)AP:AQ=:1,故Q点轨迹是个圆.
    连接AO,构造∠OAM=45°且AO:AM=:1.M点即为Q点轨迹圆圆心,此时任意时刻均有△AOP∽△AMQ.即可确定点Q的轨迹圆.
    二、轨迹之线段篇
    引例:如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是?
    分析当P点轨迹是直线时,Q点轨迹也是一条直线.
    可以这样理解:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线.
    引例如图,△APQ是等腰直角三角形,∠PAQ=90°且AP=AQ,当点P在直线BC上运动时,求Q点轨迹?
    分析当AP与AQ夹角固定且AP:AQ为定值的话,P、Q轨迹是同一种图形.
    当确定轨迹是线段的时候,可以任取两个时刻的Q点的位置,连线即可,比如Q点的起始位置和终点位置,连接即得Q点轨迹线段.
    模型总结
    必要条件:
    主动点、从动点与定点连线的夹角是定量(∠PAQ是定值);
    主动点、从动点到定点的距离之比是定量(AP:AQ是定值).
    结论:
    P、Q两点轨迹所在直线的夹角等于∠PAQ(当∠PAQ≤90°时,∠PAQ等于MN与BC夹角)
    P、Q两点轨迹长度之比等于AP:AQ(由△ABC∽△AMN,可得AP:AQ=BC:MN)

    相关试卷

    最新中考几何专项复习专题12 几何变换之平移知识精讲:

    这是一份最新中考几何专项复习专题12 几何变换之平移知识精讲,共5页。

    最新中考几何专项复习专题14 几何变换之旋转知识精讲:

    这是一份最新中考几何专项复习专题14 几何变换之旋转知识精讲,共5页。

    最新中考几何专项复习专题18 几何最值之费马点知识精讲:

    这是一份最新中考几何专项复习专题18 几何最值之费马点知识精讲,共4页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map