最新中考几何专项复习专题15 几何最值之将军饮马知识精讲
展开策略一 建构高效的课堂教学模式-----先学后教,当堂训练。
高效的课堂教学模式是保证高效的复习效果的前提,学生在教师的指导和辅导下进行先自学、探究和及时训练,获得知识、发展能力的一种教学模式。
策略二 专题内容的设计应遵循教与学的认知规律和学生心理发展规律,凸显方法规律,由简单到复杂,由特殊到一般,再由一般到特殊
总结规律,推广一般。从一般到特殊:抛砖引玉,解决问题。
策略三 设计专题内容时考虑建立几何模型,体现思想方法,让学生驾轻就熟,化难为易,化繁为简。
几何,常常因为图形变化多端,方法多种多样而被称为数学中的变形金刚。题目千变万化,但万变不离其宗。
几何最值之将军饮马知识精讲
什么是将军饮马?
传闻在亚历山大有一位精通数学和物理的学者,名字叫海伦,有一天,一位罗马将军专程去拜访他,并向他请教一个百思不得其解的问题。
如图,将军每天从军营A出发,先到河边饮(yìn)马,然后再去河岸同侧的B地开会,应该怎样走才能使得行走的路程最短?
据说,海伦稍加思索就解决了它,此后,这个问题就被称为“将军饮马”,并流传至今.
为了方便,接下来我们将这一系列问题简化为一般的数学问题进行再次研究.
一、两点一线
1.如图,在直线两侧各有一个定点,分别是点A、B,怎样在直线上找到一点P,使得PA+PB的值最小?
思路:由“两点间线段最短”可得当A、P、B三点共线时,PA+PB的值最小,即为AB的长度.
构图:连接AB,AB与的交点即为点P,如图所示:
2.如图,在直线同侧有A、B两个定点,怎样在直线上找到一点P,使得PA+PB的值最小?
思路:和上题相比,这个问题就难在PA+PB不是一条线段,而是一段折线段,由“两点之间线段最短”和“点到直线间,垂线段最短”可以将这个问题中的折线段转化为直线段.
构图:作点A关于的对称点A’,连接A’B,A’B与直线的交点即为点P,如图所示:
3.如图,在直线同侧有A、B两个定点,怎样在直线上找到一点P,使得的值最大?
构图:连接AB并延长与的交点即为点P,如图所示:
4.如图,在直线两侧各有一个定点,分别是点A、B,怎样在直线上找到一点P,使得的值最大?
构图:作点B关于直线的对称点B’,连接AB’并延长与的交点即为点P,如图所示:
5.如图,在直线同侧有A、B两个定点,怎样在直线上找到一点P,使得的值最小?
构图:连接AB,作AB的垂直平分线与直线交于点P,此时为0,如图所示:
二、一定两动
1.如图,点P在∠AOB的内部,怎么样在OA上找一点C,在OB上找一点D,使△PCD的周长最小?
构图:分别作点P关于OA、OB的对称点P’、P’’,连接P’P’’,交OA、OB于点C、D,此时△PCD的周长最小,P’P’’即为△PCD的周长最小值,如图所示:
2.如图,点P在∠AOB的内部,怎么样在OA上找一点C,在OB上找一点D,使PD+CD的值最小?
构图:作点P关于OB的对称点P’,过点P’作P’C⊥OA交OB于点D,交OA于点C,此时PD+CD的值最小,P’C即为PD+CD的值最小.
3.如图,点P在∠AOB的内部,怎样在OA、OB上分别取点C、D,使得△PCD的周长最小?
构图:分别作点P、Q关于OA、OB的对称点P’、Q’,连接P’Q’分别交OA、OB于点C、D,此时△PCD的周长最小值为PQ+P’Q’,如图所示:
三、两点两线
在直线m、n上分别找两点P、Q,使得PA+PQ+QB的值最小.
(1)A、B两点都在直线的外侧
(2)一个点在内侧,一个点在外侧
(3)两个点都在内侧
最新中考几何专项复习专题16 几何最值之瓜豆原理知识精讲: 这是一份最新中考几何专项复习专题16 几何最值之瓜豆原理知识精讲,共7页。
最新中考几何专项复习专题15 几何最值之将军饮马巩固练习(基础): 这是一份最新中考几何专项复习专题15 几何最值之将军饮马巩固练习(基础),文件包含中考几何专项复习专题15几何最值之将军饮马巩固练习基础教师版含解析docx、中考几何专项复习专题15几何最值之将军饮马巩固练习基础学生版docx等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。
最新中考几何专项复习专题18 几何最值之费马点知识精讲: 这是一份最新中考几何专项复习专题18 几何最值之费马点知识精讲,共4页。