所属成套资源:2023年初中数学中考专项分类强化训练(含答案)
2023年初中数学中考专项分类强化训练(含答案):22 几何图形的猜想、证明与探究(通用版)
展开
这是一份2023年初中数学中考专项分类强化训练(含答案):22 几何图形的猜想、证明与探究(通用版),共16页。
(1)如图①所示,若∠ABC=30°,求证:DF+BH=BD;
(2)如图②所示,若∠ABC=45°,如图③所示,若∠ABC=60°(点M与点D重合),猜想线段DF、BH与BD之间又有怎样的数量关系?请直接写出你的猜想,不需证明.
2.(•锦州)已知,在Rt△ABC中,∠ACB=90°,D是BC边上一点,连接AD,分别以CD和AD为直角边作Rt△CDE和Rt△ADF,使∠DCE=∠ADF=90°,点E,F在BC下方,连接EF.
(1)如图1,当BC=AC,CE=CD,DF=AD时,
求证:①∠CAD=∠CDF,②BD=EF;
(2)如图2,当BC=2AC,CE=2CD,DF=2AD时,猜想BD和EF之间的数量关系?并说明理由.
3.(•铁岭)如图,△ABC中,AB=AC,DE垂直平分AB,交线段BC于点E(点E与点C不重合),点F为AC上一点,点G为AB上一点(点G与点A不重合),且∠GEF+∠BAC=180°.
(1)如图1,当∠B=45°时,线段AG和CF的数量关系是______.
(2)如图2,当∠B=30°时,猜想线段AG和CF的数量关系,并加以证明.
(3)若AB=6,DG=1,csB=,请直接写出CF的长.
类型2 四边形的猜想、证明与探究
1.(•鄂尔多斯)(1)【探究发现】
如图1,∠EOF的顶点O在正方形ABCD两条对角线的交点处,∠EOF=90°,将∠EOF绕点O旋转,旋转过程中,∠EOF的两边分别与正方形ABCD的边BC和CD交于点E和点F(点F与点C,D不重合).则CE,CF,BC之间满足的数量关系是______.
(2)【类比应用】
如图2,若将(1)中的“正方形ABCD”改为“∠BCD=120°的菱形ABCD”,其他条件不变,当∠EOF=60°时,上述结论是否仍然成立?若成立,请给出证明;若不成立,请猜想结论并说明理由.
(3)【拓展延伸】
如图3,∠BOD=120°,OD=,OB=4,OA平分∠BOD,AB=,且OB2OA,点C是OB上一点,∠CAD=60°,求OC的长.
2.(•嘉兴)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.
(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=6,AD=4,求正方形PQMN的边长.
(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图2,任意画△ABC,在AB上任取一点P',画正方形P'Q'M'N',使Q',M'在BC边上,N'在△ABC内,连结BN'并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PPQMN.小波把线段BN称为“波利亚线”.
(3)推理:证明图2中的四边形PQMN是正方形.
(4)拓展:在(2)的条件下,在射线BN上截取NE=NM,连结EQ,EM(如图3).当tan∠NBM=时,猜想∠QEM的度数,并尝试证明.
请帮助小波解决“温故”、“推理”、“拓展”中的问题.
参考答案
类型1 三角形的猜想、证明与探究
1.【参考答案】(1)证明:连接CF,如图①所示,
∵AD⊥BC,BE⊥AC,
∴CF⊥AB,
∵BH⊥AB,
∴CF∥BH,
∴∠CBH=∠BCF,
∵点M是BC的中点,
∴BM=MC,
在△BMH和△CMF中,
∴△BMH≌△CMF(ASA),
∴BH=CF,
∵AB=BC,BE⊥AC,
∴BE垂直平分AC,
∴AF=CF,
∴BH=AF,
∴AD=DF+AF=DF+BH,
∵在Rt△ADB中,∠ABC=30°,
∴AD=BD,
∴DF+BH=BD;
(2)图②猜想结论:DF+BH=BD;
理由如下:
同(1)可证,AD=DF+AF=DF+BH,
∵在Rt△ADB中,∠ABC=45°,
∴AD=BD,
∴DF+BH=BD;
图③猜想结论:DF+BH=BD;
理由如下:
同(1)可证,AD=DF+AF=DF+BH,
∵在Rt△ADB中,∠ABC=60°,
∴AD=BD,∴DF+BH=BD.
2.【参考答案】(1)证明:①∵∠ACB=90°,
∴∠CAD+∠ADC=90°,
∵∠CDF+∠ADC=90°,
∴∠CAD=∠CDF;
②作FH⊥BC交BC的延长线于H,
则四边形FECH为矩形,
∴CH=EF,
在△ACD和△DHF中,
∴△ACD≌△DHF(AAS)
∴DH=AC,
∵AC=CB,
∴DH=CB,
∴DHCD=CBCD,即HG=BD,
∴BD=EF;
(2)BD=EF,
理由如下:作FG⊥BC交BC的延长线于G,
则四边形FECG为矩形,
∴CG=EF,
∵∠CAD=∠GDF,∠ACD=∠DGF=90°,
∴△ACD∽△DGF,
∴==2,即DG=2AC,
∵BC=2AC,
∴BC=DG,
∴BD=CG,
∴BD=EF.
3.【参考答案】(1)AG=CF
理由:如图1,连接AE,∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B=45°,∴AE⊥BC,∵AB=AC,∴BE=EC=AE,∠BAE=∠EAC=∠C=45°,∵∠GEF+∠BAC=180°,∴∠AGE
+∠AFE=360°180°=180°,∵∠AFE+
∠CFE=180°,∴∠AGE=∠CFE,∵∠GAE=∠C=45°,∴△AEG≌△CEF(AAS),∴AG=CF;故答案为AG=CF;
(2)AG=CF,
理由:如图2,连接AE,
∵AB=AC,
∴∠B=∠C=30°,
∴∠BAC=120°,
∵DE垂直平分AB,
∴AE=BE,
∴∠BAE=∠B=30°,
∴∠CAE=90°,∠BAE=∠C,
∵∠GEF+∠BAC=180°,
∴∠AGE+∠AFE=180°,
∵∠CFE+∠AFE=180°,
∴∠AGE=∠CFE,
∴△AGE∽△CFE,
∴=,
在Rt△ACE中,∵∠C=30°,
∴=sinC=,
∴=,
∴AG=CF;
(3)①当G在DA上时,如图3,连接AE,
∵DE垂直平分AB,
∴AD=BD=3,AE=BE,
∵csB=,
∴BE===4,
∴AE=BE=4,
∴∠BAE=∠B,
∵AB=AC,
∴∠B=∠C,
∴∠C=∠BAE,
∵∠GEF+∠BAC=180°,
∴∠AGE+∠AFE=360°180°=180°,
∵∠AFE+∠CFE=180°,
∴∠CFE=∠AGE,
∴△CFE∽△AGE,
∴=,
过 A作AH⊥BC于点H,
∵csB==,
∴BH=AB=6=,
∵AB=AC,
∴BC=2BH=9,
∵BE=4,
∴CE=9-4=5,
∵AG=ADDG=31=2,
∴=,
∴CF=2.5;
②当点G在BD上,如图4,同(1)可得,△CFE∽△AGE,
∴=,
∵AG=AD+DG=3+1=4,
∴=,
∴CF=5,
综上所述,CF的长为2.5或5.
类型2 四边形的猜想、证明与探究
1.【参考答案】(1)如图1中,结论:CE+CF=BC.
理由如下:
∵四边形ABCD是正方形,
∴AC⊥BD,OB=OC,∠OBE=∠OCF=45°,
∵∠EOF=∠BOC=90°,
∴∠BOE=∠OCF,
∴△BOE≌△COF(ASA),
∴BE=CF,
∴CE+CF=CE+BE=BC.
故答案为CE+CF=BC.
(2)如图2中,结论不成立.CE+CF=BC.
理由:连接EF,在CO上截取CJ=CF,连接FJ.
∵四边形ABCD是菱形,∠BCD=120°,
∴∠BCO=∠OCF=60°,
∵∠EOF+∠ECF=180°,
∴O,E,C,F四点共圆,
∴∠OFE=∠OCE=60°,
∵∠EOF=60°,
∴△EOF是等边三角形,
∴OF=FE,∠OFE=60°,
∵CF=CJ,∠FCJ=60°,
∴△CFJ是等边三角形,
∴FC=FJ,∠EFC=∠OFE=60°,
∴∠OFJ=∠CFE,
∴△OFJ≌△EFC(SAS),
∴OJ=CE,
∴CF+CE=CJ+OJ=OC=BC,
(3)如图3中,由OB2OA可知△BAO是钝角三角形,∠BAO90°,作AH⊥OB于H,设OH=x.
在Rt△ABH中,BH=,
∵OB=4,
∴+x=4,
解得x=(舍弃)或,
∴OA=2OH=1,
∵∠COD+∠ACD=180°,
∴A,C,O,D四点共圆,
∵OA平分∠COD,
∴∠AOC=∠AOD=60°,
∴∠ADC=∠AOC=60°,
∵∠CAD=60°,
∴△ACD是等边三角形,
由(2)可知,OC+OD=OA,
∴OC=1=.
2.【参考答案】(1)如图1中,
∵PN∥BC,∴△APN∽△ABC,
∴=,即=,
解得PN=.
(2)能画出这样的正方形,如图2中,正方形PNMQ即为所求.
(3)证明:如图2中,
由画图可知,
∠QMN=∠PQM=∠NPQ=∠BM'N'=90°,
∴四边形PNMQ是矩形,MN∥M'N',
∴△BN'M'∽△BNM,
∴=,
同理可得,=,
∴=,
∵M'N'=P'N',∴MN=PN,
∴四边形PQMN是正方形.
(4)如图3中,结论:∠QEM=90°.
理由:由tan∠NBM==,
可以假设MN=3k,BM=4k,则BN=5k,BQ=k,BE=2k,
∴==,
==,
∴=,
∵∠QBE=∠EBM,
∴△BQE∽△BEM,
∴∠BEQ=∠BME,
∵NE=NM,
∴∠NEM=∠NME,
∵∠BME+∠EMN=90°,
∴∠BEQ+∠NEM=90°,
∴∠QEM=90°.
相关试卷
这是一份2023年初中数学中考专项分类强化训练(含答案):23 动态几何问题(通用版),共18页。
这是一份2023年初中数学中考专项分类强化训练(含答案):07 反比例函数(通用版),共25页。试卷主要包含了都在函数的图象上,且等内容,欢迎下载使用。
这是一份2023年初中数学中考专项分类强化训练(含答案):06 一次函数(通用版),共19页。试卷主要包含了中国象棋是中华名族,之间对应关系的大致图象是等内容,欢迎下载使用。