适用于新高考新教材备战2025届高考数学一轮总复习第11章计数原理概率随机变量及其分布课时规范练80事件的相互独立性与条件概率全概率公式课件新人教A版
展开
这是一份适用于新高考新教材备战2025届高考数学一轮总复习第11章计数原理概率随机变量及其分布课时规范练80事件的相互独立性与条件概率全概率公式课件新人教A版,共26页。
1.(2024·山东省实验中学模拟)某市地铁1号线从A站到G站共有7个站点,甲、乙二人同时从A站上车,准备在B站、D站和G站中的某个站点下车,若他们在这3个站点中的某个站点下车是等可能的,则甲、乙二人在不同站点下车的概率为( )
解析 设“某天接纳顾客量超过1万人次”为事件A,“随后一天的接纳顾客量
3.(2024·广东惠州模拟)已知某地市场上供应的一种电子产品中,甲厂产品占80%,乙厂产品占20%,甲厂产品的合格率是75%,乙厂产品的合格率是80%,则从该地市场上买到一个合格的电子产品的概率是( )B.0.8
解析 设买到的电子产品是甲厂产品为事件A,买到的电子产品是乙厂产品为事件B,则P(A)=0.8,P(B)=0.2,记从该地市场上买到一个合格的电子产品为事件C,则P(C|A)=0.75,P(C|B)=0.8,所以P(C)=P(A)P(C|A)+P(B)·P(C|B)=0.8×0.75+0.2×0.8=0.76.
4.(多选题)(2024·山东威海模拟)已知事件A,B满足P(A)=0.5,P(B)=0.2,则( )A.若B⊆A,则P(AB)=0.5B.若A与B互斥,则P(A∪B)=0.7C.若A与B相互独立,则P( )=0.9D.若P(B|A)=0.2,则A与B相互独立
解析 对于A,因为P(A)=0.5,P(B)=0.2,B⊆A,所以P(AB)=P(B)=0.2,故A错误;对于B,因为A与B互斥,所以P(A∪B)=P(A)+P(B)=0.5+0.2=0.7,故B正确;
P(A)×P(B)=0.5×0.2=0.1,所以P(AB)=P(A)P(B),所以A与B相互独立,故D正确.故选BD.
5.(多选题)(2024·湖南岳阳高三期末)某校10月份举行校运动会,甲、乙、丙三位同学计划从长跑、跳绳、跳远中任选一项参加,每人选择各项目的
6.(2022·天津,13)现有52张扑克牌(去掉大小王),每次取一张,取后不放回,则两次都抽到A的概率为 ;在第一次抽到A的条件下,第二次也抽到A的概率是 .
解析 设第一次抽到A的事件为M,第二次抽到A的事件为N,则抽两次都是
7.(2024·广东梅州模拟)有一批同规格的产品,由甲、乙、丙三家工厂生产,其中甲、乙、丙工厂分别生产3 000件、3 000件、4 000件,而且甲、乙、丙工厂的次品率依次为6%,5%,5%,现从这批产品中任取一件,则(1)取到次品的概率为 ; (2)若取到的是次品,则其来自甲厂的概率为 .
解析 (1)设任取一件产品来自甲厂为事件A1、来自乙厂为事件A2、来自丙厂为事件A3,则A1,A2,A3彼此互斥,且A1∪A2∪A3=Ω,
设任取一件产品,取到的是次品为事件B,则P(B|A1)=6%,P(B|A2)=5%,P(B|A3)=5%,则P(B)=P(BA1)+P(BA2)+P(BA3)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=
8.(2022·新高考Ⅱ,19)在某地区进行某种疾病调查,随机调查了100位这种疾病患者的年龄,得到如下样本数据频率分布直方图.
(1)估计该地区这种疾病患者的平均年龄;(同一组中的数据用该组区间的中点值代表)(2)估计该地区一人患这种疾病患者年龄位于区间[20,70)的概率;
(3)已知该地区这种疾病患者的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口数的16%,从该地区任选1人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率(精确到0.000 1).
解 (1)估计该地区这种疾病患者的平均年龄为 =(5×0.001+15×0.002+25×0.012+35×0.017+45×0.023+55×0.020+65×0.017+75×0.006+85×0.002)×10=47.9(岁).(2)由题图,得这100位这种疾病患者中年龄位于区间[20,70)的频率为(0.012+0.017+0.023+0.020+0.017)×10=0.89,故可估计该地区一人患这种疾病患者年龄位于区间[20,70)的概率为0.89.(3)设B表示事件“任选一人年龄位于区间[40,50)”,C表示事件“任选一人患这种疾病”,由条件概率公式可得P(C|B)= =0.001 437 5≈0.001 4.
9.(2022·全国乙,理10)某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为p1,p2,p3,且p3>p2>p1>0.记该棋手连胜两盘的概率为p,则( )A.p与该棋手和甲、乙、丙的比赛次序无关B.该棋手在第二盘与甲比赛,p最大C.该棋手在第二盘与乙比赛,p最大D.该棋手在第二盘与丙比赛,p最大
解析 该棋手在第二盘与甲比赛时,p=p2p1+(1-p2)p1p3+p3p1+(1-p3)p1p2 =2p1(p2+p3)-2p1p2p3.同理,该棋手在第二盘与乙比赛时,p=2p2(p1+p3)-2p1p2p3.该棋手在第二盘与丙比赛时,p=2p3(p1+p2)-2p1p2p3.显然,由p3>p2>p1>0可知,p1(p2+p3)
相关课件
这是一份适用于新高考新教材备战2025届高考数学一轮总复习第11章计数原理概率随机变量及其分布第5节事件的相互独立性与条件概率全概率公式课件新人教A版,共35页。PPT课件主要包含了强基础固本增分,研考点精准突破,目录索引,条件概率,ABD,考点二条件概率,考点三全概率公式等内容,欢迎下载使用。
这是一份新高考数学一轮复习讲练测课件第10章§10.5事件的相互独立性与条件概率、全概率公式 (含解析),共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,PA·PB,PAPBA,求条件概率的常用方法等内容,欢迎下载使用。
这是一份2024届高考数学一轮复习(新教材人教A版强基版)第十章计数原理、概率、随机变量及其分布10.5事件的相互独立性与条件概率、全概率公式课件,共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,PA·PB,PAPBA,求条件概率的常用方法等内容,欢迎下载使用。