初中数学人教版九年级上册23.2.1 中心对称优秀习题
展开知识点01 中心对称的定义
中心对称的定义:
如图,把一个图形绕着某个点旋转 ,如果它能够与另一个图形 ,那么就说这两个图形关于这个点 ,这个点叫做 ,这两个图形中的对应点叫做关于对称中心的 。
即:△ABC绕点O旋转180°与△A'B'C'完全重合,则△ABC与△A'B'C'关于点O成中心对称,点O是对称中心,A与A' ,B与B' ,C与C' 都是对称点,
中心对称指的是两个全等的图形的位置关系。
题型考点:①概念理解。
②中心对称判断。
【即学即练1】
1.下列说法中,正确的是( )
A.形状和大小完全相同的两个图形成中心对称
B.成中心对称的两个图形必重合
C.成中心对称的两个图形形状和大小完全相同
D.旋转后能重合的两个图形成中心对称
【即学即练2】
2.下列各组图形中,△A'B'C'与△ABC成中心对称的是( )
A.B.
C.D.
知识点02 中心对称的性质
中心对称的性质:
①关于中心对称的两个图形能够 ;即 。
②关于中心对称的两个图形,它们的对应点的连线都经过 ,并且被对称中心 。
即:。
③中心对称的两个图形对应边 。
题型考点:①性质理解。
②利用性质求值。
【即学即练1】
3.如图,△ABC与△A′B′C′关于O成中心对称,下列结论中不成立的是( )
A.OC=OC′B.OA=OA′
C.BC=B′C′D.∠ABC=∠A′C′B′
【即学即练2】
4.如图所示,△A′B′C′与△ABC关于O成中心对称,那么AO= ,BO= ,CO= ,点A、O与 三点在同一直线上, 三点在同一直线上, 三点在同一直线上.
【即学即练3】
5.如图,已知点A与点C关于点O对称,点B与点D也关于点O对称,若BC=3,OD=4.则AB的长可能是( )
A.3B.4C.7D.11
【即学即练4】
6.如图,BO是等腰三角形ABC的底边中线,AC=2,AB=4,△PQC与△BOC关于点C中心对称,连接AP,则AP的长是( )
A.4B.C.D.
知识点03 中心对称图形
中心对称图形的定义:
一个图形绕某一点旋转 后,如果旋转后的图形能够与旋转前 ,那么这个图形就叫做 ,这个点叫做图形的 。
中心对称图形的性质:
性质1:对应点连线都经过 ,且被对称中心 。
性质2:对应线段 或 。
性质3:对应角 。
性质4:经过对称中心的直线把中心对称图形分成两个 的图形。
特别提示:中心对称图形和中心对称不同,中心对称是两个图形之间的位置关系,而中心对称图形是指一个图形自身的形状特点,这点应注意区分,它们性质相同,应用方法相同。
题型考点:①中心对称图形的判断。 ②利用中心图形的性质求值。
【即学即练1】
7.一张薄纸,一双巧手,在一剪一刻间幻化出千姿百态的美丽图案,令人叹为观止,这就是剪纸艺术.剪纸作品形式多样,以下剪纸作品中既是轴对称图形又是中心对称图形的是( )
A.B.
C.D.
【即学即练2】
8.如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,BC=2,求BB′的长为 .
【即学即练2】 【即学即练3】
【即学即练3】
9.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为 .
【即学即练4】
10.如图,所示,张家兄弟要平分这块地,请你用一条直线把它分成面积相等的两部分.(至少有两种画法)
知识点04 中心对称与中心对称图形作图
中心对称与中心对称图形的作图:
步骤:①确定图形的 与 。
②连接关键点与对称中心并延长,使延长的距离与关键点到对称中心的距离 。
得到 。
③按照原图形连接各对称点。
找图形的对称中心:
连接任意两组 得到两条线段,这两条线段的 就是对称中心。
题型考点:①中心对称图形的判断。
②利用中心图形的性质求值。
【即学即练1】
11.如图所示,△ABC与△A′B′C′关于点O中心对称,但点O不慎被涂掉了,请你帮排版工人找到对称中心O的位置.
【即学即练2】
12.如图,已知四边形ABCD和点P,画四边形A'B'C'D',使四边形A'B'C'D'与四边形ABCD关于点P成中心对称.
知识点05 关于原点对称的点的坐标
关于原点对称的点的坐标:
关于原点对称的两个点的坐标特点:横纵坐标均互为 。
即若点与点关于原点对称,则有 。
关于点对称的点坐标:
关于点对称的点的坐标可以利用中点坐标公式进行求解。
题型考点:①利用对称特点求点的坐标以及求值。
【即学即练1】
13.点(3,﹣2)关于原点对称的点的坐标为( )
A.(﹣3,2)B.(﹣3,﹣2)C.(3,2)D.(﹣2,3)
【即学即练2】
14.点A(a﹣1,﹣6)与点B(﹣3,1﹣b)关于原点对称,则(a+b)2023的值为 ﹣1 .
题型01 中心对称与中心对称图形
【典例1】
第31届世界大学生夏季运动会将于2023年7月28日在成都开幕.下面四个高校校徽主体图案是中心对称图形的是( )
A.北京大学B.中国人民大学
C.北京体育大学D.北京林业大学
【典例2】
中国“二十四节气“已被正式列入联合国教科文组织人类非物质文化遗产代表作品录,下列四幅作品分别代表“立春“、“谷雨“、“白露“、“大雪”,其中是中心对称图形的是( )
A.B.
C.D.
【典例3】
数学中的对称之美无处不在,下列是小明看到的他所在小区的垃圾桶上的四幅垃圾分类标志图案,如果不考虑图案下面的文字说明,那么这四幅图案既是轴对称图形又是中心对称图形的是( )
A.B.
C.D.
【典例4】
2023年第31届世界大学生运动会在成都举行,吉祥物“蓉宝”深受网民喜爱,结合你所学知识,在下列四个选项中,能够和“蓉宝”(如图)的图片成中心对称的是( )
A.B.
C.D.
【典例5】
下列四组图形中,左边的图形与右边的图形成中心对称的有( )
A.1组B.2组C.3组D.4组
【典例6】
下列图形中,点O是该图形的对称中心的是( )
A.B.
C. D.
题型02 中心对称的性质
【典例1】
如图,△ABC与△A'B'C'关于点O成中心对称,下列结论中不成立的是( )
OB=OB'
B.∠ACB=∠A'B'C'
C.点A的对称点是点A'
D.BC∥B'C'
【典例2】
如图,△ABC与△DEC关于点C成中心对称,,AE=3,∠D=90°,则AC= 1 .
【典例3】
如图矩形的长为10,宽为4,点O是各组三角形的对称中心,则图中阴影面积为( )
A.20B.15C.10D.25
【典例4】
如图,正方形ABCD和正方形EFGH的对称中心都是点O,其边长分别是3和2,则图中阴影部分的面积是( )
A.B.1.25C.1.5D.无法确定
【典例5】
如图,在菱形ABCD中,AB=2,∠A=120°,过菱形ABCD的对称中心O分别作边AB,BC的垂线,交各边于点E,F,G,H,则四边形EFGH的周长为( )
A.B.C.D.
【典例6】
如图,把正方形ABCD绕着它的对称中心O沿着逆时针方向旋转,得到正方形A′B′C′D′,A′B′和B'C′分别交AB于点E,F,在正方形旋转过程中,∠EOF的大小( )
A.随着旋转角度的增大而增大
B.随着旋转角度的增大而减小
C.不变,都是60°
D.不变,都是45°
题型03 关于原点对称的点
【典例1】
点P(﹣2,5)关于原点对称的点的坐标是( )
A.P1(2,﹣5)B.P1(2,5)C.P1(﹣2,﹣5)D.P1(5,﹣2)
【典例2】
在平面直角坐标系中,点(a+5,4)关于原点的对称点为(﹣3,﹣b),则ab的值为( )
A.8B.﹣8C.32D.﹣32
【典例3】
已知在平面直角坐标系中,点A(m﹣3,1﹣m) 关于坐标原点对称的点位于第一象限,则m的取值范围是( )
A.m>﹣1B.m<1C.1<m<3D.m<3
【典例4】
若点P(m,1)关于原点的对称点Q(﹣2,n),那么m+n= .
【典例5】
已知:点A(a+b,3a﹣b)与点B(﹣2,6)关于原点对称.
(1)分别求a,b的值;
(2)求点A关于x轴的对称点的坐标;
(3)求点B关于y轴的对称点的坐标.
题型04 几何变换类型
【典例1】
点(4,3)经过某种图形变换后得到点B(4,﹣3),这种图形变换可以是( )
A.关于x轴对称B.关于y轴对称
C.绕原点逆时针旋转90°D.绕原点顺时针旋转90°
【典例2】
观察图,依次几何变换顺序正确的是( )
A.轴对称、旋转、平移B.旋转、轴对称、平移
C.轴对称、平移、旋转D.平移、轴对称、旋转
【典例3】
已知,在平面直角坐标系中,M(2,2),规定“把点M先关于x轴对称,再向左平移1个单位”为一次变换.那么连续经过2022次这种变换后,点M的坐标变为( )
A.(﹣2018,﹣2)B.(﹣2020,2)C.(﹣2019,2)D.(﹣2021,﹣2)
【典例4】
在平面直角坐标系中,点P(x,y)经过某种变换后得到点P'(﹣y+1,x+2),我们把点P'(﹣y+1,x+2)叫做点P(x,y)的终结点,已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样由P1依次得到P2,P3,P4……pn,若点P1的坐标为(2,0),则点P2023的坐标为( )
A.(2,0)B.(﹣2,﹣1)C.(﹣3,3)D.(1,4)
1.下列选项中的图形是理想、蔚来、小鹏、哪吒四款新能源汽车的标志,其中是中心对称图形的为( )
A.B.
C.D.
2.最近北京2022年冬奥会的吉祥物“冰墩墩”成为了互联网的“顶流”,他呆萌的形象受到了人们的青睐,结合你所学知识,从下列四个选项中选出能够和如图的图片成中心对称的是( )
A.B.C.D.
3.如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B停止,延长EO交CD于点F,则四边形AECF形状不可能是( )
第3题 第4题
A.平行四边形B.菱形C.正方形D.矩形
4.如图,在平面直角坐标系xOy中,△ABC经过中心对称变换得到△A′B′C′,那么对称中心的坐标为( )
A.(0,0)B.(﹣1,0)C.(﹣1,﹣1)D.(0,﹣1)
5.如图,△ABC中,∠ABC=90°,∠CAB=60°,AC=4.作出△ABC关于点A成中心对称的△AB'C',其中点B对应点为B',点C对应点为C',则四边形CB'C'B的面积是( )
A.128B.C.64D.
6.如图,菱形ABCD的对角线AC、BD交于点O,AC=4,BD=16,将△BOC绕着点C旋转180°得到△B′O′C,则点A与点B′之间的距离为( )
A.6B.8C.10D.12
7.如图,在平面直角坐标系中,矩形OABC的顶点A和C分别落在y轴与x轴的正半轴上,OA=6.OC=8.若直线y=2x+b把矩形面积两等分,则b的值等于( )
A.5B.2C.﹣2D.﹣5
8.在如图所示的平面直角坐标系中,△OA1B1是边长为4的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2nA2n+1B2n+1.(n是正整数)的顶点A2n+1的坐标是( )
A.B.C.D.
9.图1和图2中所有的小正方形都全等,若将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,则应该放到的这个位置的序号是 .
10.已知点P(a+3b,3)与Q(﹣5,a+2b)关于原点对称,则a+b= .
11.如图,坐标平面内的两个三角形是由一个经过某种变换得到另一个的,点P、Q是一对对应点,已知点P(m,2)是第二象限内,阴影三角形内部的一个点.则点Q的坐标为 (可用含m的式子表示).
12.如图,平行四边形ABCD中,AB=2,BC=3,∠B=60°,点P在AD上,且AP=2,若直线l经过点P,将该平行四边形的面积平分,并与平行四边形的另一边交于点Q,则线段PQ的长度为 .
13.如图,在平面直角坐标系xOy中,矩形OABC的顶点A、C分别在x轴与y轴上,点B的坐标为(a,b).
(1)当a=6,b=3时,若一次函数y=kx+4的图象平分矩形OABC面积,求k的值;
(2)若P为矩形OABC内部一点,且△POA的面积与△POC的面积相等,求证:点P在OB上.
14.已知△ABC≌△CDE,且B、C、D三点共线,∠B=90°,连接AE.
(1)一般说来,全等三角形可以通过轴对称、平移、旋转得到.请填空:△ABC绕点B逆时针旋转 度,再向右平移 (填“BC”、“CD”
或“BD”)的距离,可得△CDE;
(2)若AC=10,△ABC周长为24,求:
①线段BD的长;
②∠ACE的度数.
15.在△ABC中,∠ABC<90°,将△ABC在平面内绕点B顺时针旋转(旋转角不超过180°),得到△DBE,其中点A的对应点为点D,连接CE,CE∥AB.
(1)如图1,试猜想∠ABC与∠BEC之间满足的等量关系,并给出证明;
(2)如图2,若点D在边BC上,DC=2,AC=,求AB的长.
课程标准
学习目标
①中心对称及其性质
②中心对称作图
③中心对称图形
④关于原点对称的点的坐标
掌握中心对称及其中心对称的性质
能够熟练的进行中心对称作图
掌握中心对称图形的概念以及中心对称图形的性质
掌握点关于原点对称的点的坐标特点,能够熟练的进行坐标的求解
初中数学人教版九年级上册25.1.2 概率优秀练习题: 这是一份初中数学人教版九年级上册<a href="/sx/tb_c24925_t7/?tag_id=28" target="_blank">25.1.2 概率优秀练习题</a>,文件包含第02讲概率的计算原卷版docx、第02讲概率的计算解析版docx等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。
初中数学人教版九年级上册24.1.1 圆精品练习题: 这是一份初中数学人教版九年级上册<a href="/sx/tb_c88761_t7/?tag_id=28" target="_blank">24.1.1 圆精品练习题</a>,文件包含第08讲圆锥原卷版docx、第08讲圆锥解析版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
初中数学第二十四章 圆24.2 点和圆、直线和圆的位置关系24.2.1 点和圆的位置关系精品同步测试题: 这是一份初中数学<a href="/sx/tb_c88766_t7/?tag_id=28" target="_blank">第二十四章 圆24.2 点和圆、直线和圆的位置关系24.2.1 点和圆的位置关系精品同步测试题</a>,文件包含第04讲点与圆的位置关系原卷版docx、第04讲点与圆的位置关系解析版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。