终身会员
搜索
    上传资料 赚现金

    备战中考数学《重难点解读•专项训练》专题06 四点共圆(知识解读)

    立即下载
    加入资料篮
    备战中考数学《重难点解读•专项训练》专题06 四点共圆(知识解读)第1页
    备战中考数学《重难点解读•专项训练》专题06 四点共圆(知识解读)第2页
    备战中考数学《重难点解读•专项训练》专题06 四点共圆(知识解读)第3页
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    备战中考数学《重难点解读•专项训练》专题06 四点共圆(知识解读)

    展开

    这是一份备战中考数学《重难点解读•专项训练》专题06 四点共圆(知识解读),共17页。试卷主要包含了复习方法,复习难点等内容,欢迎下载使用。


    一、复习方法
    1.以专题复习为主。 2.重视方法思维的训练。
    3.拓宽思维的广度,培养多角度、多维度思考问题的习惯。
    二、复习难点
    1.专题的选择要准,安排时间要合理。 2.专项复习要以题带知识。
    3.在复习的过程中要兼顾基础,在此基础上适当增加变式和难度,提高能力。
    专题06 四点共圆(知识解读)
    【专题说明】
    四点共圆在圆内接四边形综合问题的求解中占据了重要地位,都是在大题中结合题目的几何背景进行综合考查,重在考查学生对知识的应用能力.考查的基本类型有:利用四点共圆证相似,利用四点共圆求最值,这些问题大都利用转化思想,将几何问题转化为四点共圆问题,使题目能简单求解.
    【方法技巧】
    1.四点共圆
    如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”.
    2.四点共圆的性质
    (1)共圆的四个点所连成同侧共底的两个三角形的顶角相等.
    (2)圆内接四边形的对角互补.
    (3)圆内接四边形的一个外角等于它的内对角.
    3.四点共圆的判定
    (1)用“角”判定:
    ①一组对角互补的四边形的四个顶点在同一个圆上;
    ②一个外角等于它的内对角的四边形的四个顶点在同一个圆上;
    ③如果两个三角形有一条公共边,且位于公共边同侧的两个角相等,则这两个三角形的四个顶点在同一个圆上.
    (2)“等线段”判定:
    四顶点到同一点的距离相等,若OA=OB=OC=OD,则A,B,C,D四点共圆.
    (3)用“比例线段”判定:
    若线段AB,CD(或其延长线)交于点P,且PA·PC=PB·PD,则A,B,C,D四点共圆.
    模型解读:
    模型1:对角互补型:
    若∠A+∠C=180º或∠B+∠D=180º,
    则A、B、C、D四点共圆
    模型2:同侧等角型
    (1)若∠A=∠C,
    则A、B、C、D四点共圆
    (2)手拉手(双子型)中的四点共圆
    条件:△OCD∽△OAB
    结论:①△OAC∽△OBD
    ②AC与BD交于点E,必有∠AEB=∠AOB;
    ③点E在△OAB的外接圆上,即O、A、B、E四点共圆.同理:ODCE也四点共圆.
    模型3:直径是圆中最长的弦
    1.定圆中最长的弦是直径;
    2.经过圆中定点最短的弦是垂直于过这点直径的弦;
    3.定弦中最小的圆是以该弦为直径的圆。

    【典例分析】
    【模型1:对角互补型】
    【典例1】如图,正方形ABCD绕点A逆时针旋转到正方形AEFG,连接BE,延长BE交于CF于点M,求证:M是线段CF的中点.
    【变式1】如图,在矩形ABCD中,AB=6,AD=8,P、E分别是线段AC、BC上的点,四边形PEFD为矩形,若AP=2,求CF的长。
    【模型2:同侧等角型】
    【典例2】在Rt△ABC中,∠ACB=90º,将△ABC绕点A顺时针旋转αº
    (0<α<180)得△ADE,∠AED=90º,直线BD与直线CE的交点为P.
    求证:PB=PD
    【模型3:直径是圆中最长的弦】
    【典例3】在△ABC中,∠ACB=90º,AC=6,BC=8,O为AB的中点,过O作 OE⊥OF,OE、OF分别交射线AC,BC于E、F,则EF的最小值为?
    【变式3】如图,在⊙O中,直径AB=12,点D是圆上任意一点(A,B除外),点P为CD的中点,过点D作DE⊥AB于点E,连接AD,EP.求EP的最大值。
    【随堂精练】
    1.(2021秋•永泰县期中)如图,在Rt△ABC中,∠BAC=90°,∠ABC=40°,将△ABC绕A点顺时针旋转得到△ADE,使D点落在BC边上.
    (1)求∠BAD的度数;
    (2)求证:A,D,B,E四点共圆.
    2.如图,四边形ABCD是某高新区核心地块用地示意图,经测量得如下数据:AB=30km,BC=40km,∠B=120°,∠A+∠C=180°,请计算这块规划用地的最大面积.
    3.如图,已知AC=BC=4,点D是AB下方一点,且∠C=∠D=90°,求四边形ACBD面积的最大值.
    专题06 四点共圆(知识解读)
    【专题说明】
    四点共圆在圆内接四边形综合问题的求解中占据了重要地位,都是在大题中结合题目的几何背景进行综合考查,重在考查学生对知识的应用能力.考查的基本类型有:利用四点共圆证相似,利用四点共圆求最值,这些问题大都利用转化思想,将几何问题转化为四点共圆问题,使题目能简单求解.
    【方法技巧】
    1.四点共圆
    如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”.
    2.四点共圆的性质
    (1)共圆的四个点所连成同侧共底的两个三角形的顶角相等.
    (2)圆内接四边形的对角互补.
    (3)圆内接四边形的一个外角等于它的内对角.
    3.四点共圆的判定
    (1)用“角”判定:
    ①一组对角互补的四边形的四个顶点在同一个圆上;
    ②一个外角等于它的内对角的四边形的四个顶点在同一个圆上;
    ③如果两个三角形有一条公共边,且位于公共边同侧的两个角相等,则这两个三角形的四个顶点在同一个圆上.
    (2)“等线段”判定:
    四顶点到同一点的距离相等,若OA=OB=OC=OD,则A,B,C,D四点共圆.
    (3)用“比例线段”判定:
    若线段AB,CD(或其延长线)交于点P,且PA·PC=PB·PD,则A,B,C,D四点共圆.
    模型解读:
    模型1:对角互补型:
    若∠A+∠C=180º或∠B+∠D=180º,
    则A、B、C、D四点共圆
    模型2:同侧等角型
    (1)若∠A=∠C,
    则A、B、C、D四点共圆
    (2)手拉手(双子型)中的四点共圆
    条件:△OCD∽△OAB
    结论:①△OAC∽△OBD
    ②AC与BD交于点E,必有∠AEB=∠AOB;
    ③点E在△OAB的外接圆上,即O、A、B、E四点共圆.同理:ODCE也四点共圆.
    模型3:直径是圆中最长的弦
    1.定圆中最长的弦是直径;
    2.经过圆中定点最短的弦是垂直于过这点直径的弦;
    3.定弦中最小的圆是以该弦为直径的圆。

    【典例分析】
    【模型1:对角互补型】
    【典例1】如图,正方形ABCD绕点A逆时针旋转到正方形AEFG,连接BE,延长BE交于CF于点M,求证:M是线段CF的中点.
    【简答】∵AC=AF,AB=AE且∠BAE=∠CAF
    ∴△AEB∽△AFC,∴∠ABE=∠ACF,
    ∴A、B、C、M四点共圆,
    ∵∠ABC=90º,∴AC是直径,∴∠AMC=90º,
    ∵AE=AC,∴AM垂直且平分CF(三线合一).
    【变式1】如图,在矩形ABCD中,AB=6,AD=8,P、E分别是线段AC、BC上的点,四边形PEFD为矩形,若AP=2,求CF的长。
    【解析】∠PEF=∠PDF=∠DCE=90º,
    知D,F,C,D,P共圆,如下图,由∠1=∠2,∠4=∠5,易得△APD∽△DCF,
    CF:AP=CD:AD,得CF=1.5。
    【模型2:同侧等角型】
    【典例2】在Rt△ABC中,∠ACB=90º,将△ABC绕点A顺时针旋转αº
    (0<α<180)得△ADE,∠AED=90º,直线BD与直线CE的交点为P.
    求证:PB=PD
    【解析】由旋转的性质得∠CAE=∠BAD=α,AC=AE,AB=AD,
    ∴∠CEA=∠ADB∴A,D,E,P四点共圆
    ∴∠APD=∠AED=90º∴AP⊥BD
    ∴PB=PD
    【模型3:直径是圆中最长的弦】
    【典例3】在△ABC中,∠ACB=90º,AC=6,BC=8,O为AB的中点,过O作 OE⊥OF,OE、OF分别交射线AC,BC于E、F,则EF的最小值为?
    【解析】∵∠EOF=∠C=90º,∴C,O均在以EF为直径的圆上∵EF是圆的直径,O、C均在圆上,且OC长度固定,要使EF最短,则圆最小,要使圆最小,由于OC为固定长度,则OC为直径时,圆最小,此时EF=CO=OA=OB=5
    (斜边上中线等于斜边一半)
    【变式3】如图,在⊙O中,直径AB=12,点D是圆上任意一点(A,B除外),点P为CD的中点,过点D作DE⊥AB于点E,连接AD,EP.求EP的最大值。
    【解析】延长DE交⊙O于点F,连接FC,利用三角形的中位线得出PE=0.5FC.当FC为⊙O的直径时,PE最大=6。
    【随堂精练】
    1.(2021秋•永泰县期中)如图,在Rt△ABC中,∠BAC=90°,∠ABC=40°,将△ABC绕A点顺时针旋转得到△ADE,使D点落在BC边上.
    (1)求∠BAD的度数;
    (2)求证:A,D,B,E四点共圆.
    【解答】(1)解:由旋转知,AD=AC,
    ∵∠BAC=90°,∠ABC=40°,
    ∴∠ADC=∠C=90°﹣∠ABC=90°﹣40°=50°,
    ∴∠DAC=180°﹣∠ADC﹣∠C=180°﹣50°﹣50°=80°,
    ∴∠BAD=∠BAC﹣∠DAC=90°﹣80°=10°;
    (2)证明:连接BE,
    由旋转知,AB=AE,∠EAD=∠BAC=90°,
    ∵∠BAD=10°,
    ∴∠EAB=∠EAD﹣∠BAD=90°﹣10°=80°,
    ∴∠EBA=∠BEA=×(180°﹣∠EAB)=×(180°﹣80°)=50°,
    ∴∠EBD=∠EBA+∠ABC=50°+40°=90°,
    即△EBD是以ED为斜边的直角三角形,
    又∵△EAD也是以ED边为斜边的直角三角形,
    ∴A,D,B,E四点在以ED为直径的圆上,
    即A,D,B,E四点共圆.
    2.如图,四边形ABCD是某高新区核心地块用地示意图,经测量得如下数据:AB=30km,BC=40km,∠B=120°,∠A+∠C=180°,请计算这块规划用地的最大面积.
    【解答】解:∵四边形ABCD中,∠DAC+∠DCB=180°,
    ∴A、B、C、D四点共圆,
    如图,延长CB,过点A作AE⊥CB于点E,连接AC,过点D作DF⊥AC于点F.
    ∵∠ABC=120°,
    ∴∠ADC=∠ABE=60°,
    ∴BE=AB=15km,AE==15km,CE=40+15=55km,
    ∴S△ABC===300km2.
    则当△ADC的面积最大时,四边形ABCD的面积最大.
    当AD=CD时,DF最大,此时四边形ABCD的面积最大.
    在Rt△ACE中,AC==10km,AF=AC=5km,
    ∵∠ADF==30°,
    ∴DF=AF=5km,
    ∴S△ADC===925km2.
    300+925=1225km2.
    ∴四边形ABCD的最大面积为1225km2.
    3.如图,已知AC=BC=4,点D是AB下方一点,且∠C=∠D=90°,求四边形ACBD面积的最大值.
    【解答】解:过点C作CE⊥AB,垂足为E,过点D作DF⊥AB,垂足为F,
    ∵∠C=∠D=90°,
    ∴AB是圆的直径,即A,C,B,D四个点在以AB为直径的圆上,
    ∵AC=BC=4,
    ∴AB===,
    ∵四边形ACBD的面积=△ACB的面积+△ADB的面积,
    ∴四边形ACBD的面积=AB•DE+AB•DF
    =AB•(DE+DF),
    ∴当DE与DF的和等于圆的直径时,四边形ACBD的面积最大,
    即当DE+DF=时,
    四边形ACBD的面积=××=16,
    ∴四边形ACBD面积的最大值为16.

    相关试卷

    备战中考数学《重难点解读•专项训练》专题06 半角模型综合应用(知识解读):

    这是一份备战中考数学《重难点解读•专项训练》专题06 半角模型综合应用(知识解读),共32页。试卷主要包含了复习方法,复习难点等内容,欢迎下载使用。

    备战中考数学《重难点解读•专项训练》专题02 线圆最值(知识解读):

    这是一份备战中考数学《重难点解读•专项训练》专题02 线圆最值(知识解读),共15页。试卷主要包含了复习方法,复习难点等内容,欢迎下载使用。

    备战中考数学《重难点解读•专项训练》专题06 四点共圆(专项训练):

    这是一份备战中考数学《重难点解读•专项训练》专题06 四点共圆(专项训练),文件包含专题06四点共圆专项训练原卷版docx、专题06四点共圆专项训练解析版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        备战中考数学《重难点解读•专项训练》专题06 四点共圆(知识解读)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map