终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    最新高考理数考点一遍过讲义 考点58 数系的扩充与复数的引入

    立即下载
    加入资料篮
    最新高考理数考点一遍过讲义 考点58 数系的扩充与复数的引入第1页
    最新高考理数考点一遍过讲义 考点58 数系的扩充与复数的引入第2页
    最新高考理数考点一遍过讲义 考点58 数系的扩充与复数的引入第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    最新高考理数考点一遍过讲义 考点58 数系的扩充与复数的引入

    展开

    这是一份最新高考理数考点一遍过讲义 考点58 数系的扩充与复数的引入,共23页。学案主要包含了复数的概念,复数的几何意义,复数的代数运算等内容,欢迎下载使用。
    课本上和老师讲解的例题,一般都具有一定的典型性和代表性。要认真研究,深刻理解,要透过“样板”,学会通过逻辑思维,灵活运用所学知识去分析问题和解决问题,特别是要学习分析问题的思路、解决问题的方法,并能总结出解题的规律。
    2、精练习题
    复习时不要搞“题海战术”,应在老师的指导下,选一些源于课本的变式题,或体现基本概念、基本方法的基本题,通过解题来提高思维能力和解题技巧,加深对所学知识的深入理解。在解题时,要独立思考,一题多思,一题多解,反复玩味,悟出道理。
    3、加强审题的规范性
    每每大考过后,总有同学抱怨没考好,纠其原因是考试时没有注意审题。审题决定了成功与否,不解决这个问题势必影响到高考的成败。那么怎么审题呢? 应找出题目中的已知条件 ;善于挖掘题目中的隐含条件 ;认真分析条件与目标的联系,确定解题思路 。
    4、重视错题
    “错误是最好的老师”,但更重要的是寻找错因,及时进行总结,三五个字,一两句话都行,言简意赅,切中要害,以利于吸取教训,力求相同的错误不犯第二次。
    专题58 数系的扩充与复数的引入
    (十九)数系的扩充与复数的引入
    1.复数的概念
    (1)理解复数的基本概念.
    (2)理解复数相等的充要条件.
    (3)了解复数的代数表示法及其几何意义.
    2.复数的四则运算
    (1)会进行复数代数形式的四则运算.
    (2)了解复数代数形式的加、减运算的几何意义.
    一、复数的概念
    二、复数的几何意义
    1.复数的几何意义
    复数集C和复平面内所有的点组成的集合是一一对应的,复数集C与复平面内所有以原点O为起点的向量组成的集合也是一一对应的,即
    (1)复数z=a+bi复平面内的点(a,b∈R).
    (2)复数z=a+bi(a,b∈R)平面向量.
    2.复数加、减法的几何意义
    (1)复数加法的几何意义:若复数z1,z2对应的向量不共线,则复数z1+z2是以为两邻边的平行四边形的对角线所对应的复数.
    (2)复数减法的几何意义:复数z1−z2是所对应的复数.
    三、复数的代数运算
    1.复数的运算
    (1)复数的加、减、乘、除运算法则
    设,则
    ①加法:;
    ②减法:;
    ③乘法:;
    ④除法:.
    (2)复数加法的运算定律
    复数的加法满足交换律、结合律,即对任何z1,z2,z3∈C,有.
    (3)复数乘法的运算定律
    复数的乘法满足交换律、结合律、分配律,即对于任意z1,z2,z3∈C,有,,.
    2.常用结论
    (1);eq \f(1+i,1-i)=;eq \f(1-i,1+i)=.
    (2).
    (3).
    (4).
    (5)模的运算性质:①;②;③.
    考向一 复数的有关概念
    求解与复数概念相关问题的技巧:
    复数的分类、复数的相等、复数的模,共轭复数的概念都与复数的实部与虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即a+bi(a,b∈R)的形式,再根据题意求解.
    典例1 已知是虚数单位,复数,复数的共轭复数.
    (1)若,求实数的值;
    (2)若是纯虚数,求.
    【答案】(1)4;(2).
    【解析】.
    (1)由已知得.
    .
    (2)由已知得,
    是纯虚数,
    ,解得,
    .
    【名师点睛】本题主要考查复数的计算和复数的概念,考查复数模的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.熟记结论:若z=a+bi(a,b∈R),则b=0时,z∈R;b≠0时,z是虚数;a=0且b≠0时,z是纯虚数.对于本题,(1)先求出,再根据,求出实数的值;(2)由已知得,再根据是纯虚数求出a的值即得解.
    1.设是虚数单位,如果复数的实部与虚部互为相反数,那么实数的值为
    A.B.
    C.D.
    考向二 复数的几何意义
    复数的几何意义及应用:
    (1)复数z、复平面上的点Z及向量相互联系,即z=a+bi(a,b∈R)Z(a,b).
    (2)由于复数、点、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观.
    【注意】|z|的几何意义:令z=x+yi(x,y∈R),则|z|=eq \r(x2+y2),由此可知表示复数z的点到原点的距离就是|z|的几何意义;|z1−z2|的几何意义是复平面内表示复数z1,z2的两点之间的距离.
    典例2 复数(为虚数单位)在复平面内对应的点位于
    A.第一象限 B.第二象限
    C.第三象限 D.第四象限
    【答案】B
    【解析】,对应点为,位于第二象限.
    故选B.
    典例3 如图所示,平行四边形OABC的顶点O,A,C分别表示0,3+2i,−2+4i.
    试求:
    (1)所表示的复数;
    (2)对角线所表示的复数;
    (3)求B点对应的复数.
    【答案】(1)所表示的复数为−3−2i,所表示的复数为;(2)5−2i;(3)1+6i.
    【解析】(1)∵,
    ∴所表示的复数为.
    ∵,
    ∴所表示的复数为.
    (2)∵eq \(CA,\s\up6(→))=eq \(OA,\s\up6(→))−eq \(OC,\s\up6(→)),
    ∴eq \(CA,\s\up6(→))所表示的复数为.
    (3)∵eq \(OB,\s\up6(→))=eq \(OA,\s\up6(→))+eq \(AB,\s\up6(→))=eq \(OA,\s\up6(→))+eq \(OC,\s\up6(→)),
    ∴eq \(OB,\s\up6(→))所表示的复数为(3+2i)+(−2+4i)=1+6i,即B点对应的复数为1+6i.
    【名师点睛】结合图形和已知点对应的复数,根据加减法的几何意义,即可求解.
    2.复数,则的共轭复数在复平面内的对应点在
    A.第一象限B.第二象限
    C.第三象限D.第四象限
    3.如果复数满足,那么的最小值是________.
    考向三 复数的四则运算
    复数代数形式的四则运算是每年高考考查的一个重要考向,常利用复数的加减乘运算求复数,利用复数的相等或除法运算求复数等,题型为选择题或填空题,难度较小,属容易题,复数代数形式的运算问题常见题型及解题策略:
    (1)复数的乘法运算满足多项式的乘法法则,利用此法则后将实部与虚部分别写出即可.
    (2)复数的除法运算主要是利用分子、分母同乘以分母的共轭复数进行运算化简.
    (3)利用复数的相关概念解题时,通常是设出复数或利用已知联立方程求解.
    (4)复数的运算与复数几何意义的综合题.先利用复数的运算法则化简,一般化为a+bi(a,b∈R)的形式,再结合复数的几何意义解答.
    (5)复数的综合运算.分别运用复数的乘法、除法法则进行运算,要注意运算顺序,要先算乘除,后算加减,有括号要先算括号里面的.
    典例4
    A.1+i B.1−i
    C.−1+i D.−1−i
    【答案】D
    【解析】.
    故选D.
    典例5 已知为虚数单位,则等于
    A.B.
    C.D.
    【答案】D
    【解析】由于,
    则的周期为4,且,
    所以原式=.
    故选D.
    【名师点睛】本题主要考查复数的计算和的周期性,意在考查学生对这些知识的理解掌握水平和分析推理能力.对于本题,利用的周期求解即可.
    4.若,则
    A.−2B.2
    C.D.
    1.
    A.B.
    C.−1D.1
    2.若,则
    A.B.
    C.−1D.1
    3.设i为虚数单位,,“复数是纯虚数”是“”的
    A.充分不必要条件B.必要不充分条件
    C.充要条件D.既不充分又不必要条件
    4.在复平面内,复数的共轭复数对应的点位于
    A.第一象限B.第二象限
    C.第二象限D.第四象限
    5.已知复数是纯虚数(i是虚数单位),则实数a等于
    A.−2B.2
    C.D.−1
    6.已知,,则
    A.B.
    C.2D.
    7.已知复数的实部为1,且的模长为2,则
    A.B.
    C.D.
    8.设复数在复平面内对应的点为,,若复数的实部与虚部的和为,则
    A.B.
    C.D.
    9.已知a,b∈R,i为虚数单位,(2a+i)(1+3i)=3+bi,则a+b=
    A.22B.−16
    C.9D.−9
    10.若复数()不是纯虚数,则
    A.B.
    C.D.且
    11.已知,,是关于的方程的一个根,则
    A.B.
    C.D.
    12.若复数在复平面内的对应点关于实轴对称,,则
    A.B.
    C.D.
    13.设是复数,则下列命题中的假命题是
    A.若,则B.若,则
    C.若,则D.若,则
    14.下列命题正确的是
    A.复数不是纯虚数
    B.若,则复数为纯虚数
    C.若是纯虚数,则实数
    D.若复数,则当且仅当时,为虚数
    15.欧拉公式(为虚数单位)是瑞士数学家欧拉发明的,将指数的定义域扩大到复数集,建立了三角函数和指数函数的联系,被誉为“数学中的天桥”.根据欧拉公式可知,表示的复数的模为
    A.B.
    C.D.
    16.__________.
    17.复数的虚部为________.
    18.已知复数,为虚数单位,若在复平面内对应的点位于第一象限,则的取值范围是___________.
    19.若复数是虚数单位),且为纯虚数,则实数=___________.
    20.设是复数,表示满足时的最小正整数,是虚数单位,则________.
    1.【2019年高考北京卷理数】已知复数,则
    A.B.
    C.D.
    2.【2019年高考全国Ⅰ卷理数】设复数z满足,z在复平面内对应的点为(x,y),则
    A.B.
    C.D.
    3.【2019年高考全国Ⅱ卷理数】设z=–3+2i,则在复平面内对应的点位于
    A.第一象限B.第二象限
    C.第三象限D.第四象限
    4.【2019年高考全国Ⅲ卷理数】若,则z=
    A.B.
    C.D.
    5.【2018年高考浙江卷】复数(i为虚数单位)的共轭复数是
    A.1+iB.1−i
    C.−1+iD.−1−i
    6.【2018年高考全国Ⅰ卷理数】设,则
    A.B.
    C.D.
    7.【2018年高考全国Ⅱ卷理数】
    A.B.
    C.D.
    8.【2018年高考全国Ⅲ卷理数】
    A.B.
    C.D.
    9.【2018年高考北京卷理数】在复平面内,复数的共轭复数对应的点位于
    A.第一象限 B.第二象限
    C.第三象限 D.第四象限
    10.【2017年高考全国Ⅰ卷理数】设有下面四个命题
    :若复数满足,则;
    :若复数满足,则;
    :若复数满足,则;
    :若复数,则.
    其中的真命题为
    A.B.
    C.D.
    11.【2017年高考全国Ⅱ卷理数】
    A.B.
    C.D.
    12.【2017年高考全国Ⅲ卷理数】设复数z满足(1+i)z=2i,则∣z∣=
    A.B.
    C.D.2
    13.【2017年高考北京卷理数】若复数在复平面内对应的点在第二象限,则实数a的取值范围是
    A.B.
    C.D.
    14.【2019年高考天津卷理数】是虚数单位,则的值为______________.
    15.【2019年高考浙江卷】复数(为虚数单位),则=______________.
    16.【2019年高考江苏卷】已知复数的实部为0,其中为虚数单位,则实数a的值是______________.
    17.【2018年高考天津卷理数】i是虚数单位,复数______________.
    18.【2018年高考江苏卷】若复数满足,其中i是虚数单位,则的实部为______________.
    19.【2017年高考天津卷理数】已知,i为虚数单位,若为实数,则a的值为______________.
    20.【2017年高考浙江卷】已知,(i是虚数单位),则______________,______________.
    21.【2017年高考江苏卷】已知复数,其中i是虚数单位,则的模是______________.
    变式拓展
    1.【答案】D
    【解析】==,
    ∵复数的实部与虚部互为相反数,∴,即a=.
    故选D.
    【名师点睛】本题考查了复数代数形式的乘除运算,考查了复数的实部与虚部的概念,属于基础题.求解时,由复数代数形式的乘除运算化简复数,再由已知条件列出方程,求解即可得答案.
    2.【答案】A
    【解析】,在复平面内的对应点为,
    故选A.
    【名师点睛】本题考查复数,属于基础题.求解时,化简,写出共轭复数即可根据复平面的定义选出答案.
    3.【答案】
    【解析】设,由复数模的三角不等式可得,
    所以复数在复平面的轨迹是连接点和的线段,的几何意义为复数对应的点到点的距离,如下图所示:
    当时,则取得最小值.
    故答案为:.
    【名师点睛】本题考查与复数相关的点的轨迹问题,解本题的关键在于确定出复数对应的点的轨迹,利用数形结合思想求解,考查分析问题的和解决问题的能力,属于中等题.求解本题时,先得出复数对应的点的轨迹为复平面内连接点和的线段,的几何意义为复数对应的点到点的距离,利用数形结合思想可得出的最小值.
    4.【答案】C
    【解析】因为,
    所以,
    所以,故选C.
    【名师点睛】本题主要考查了复数模的性质,共轭复数的性质,属于中档题.求解时,根据共轭复数的性质可知,直接利用复数模的性质即可求解.
    专题冲关
    1.【答案】A
    【解析】,故选A.
    【名师点睛】复数的代数形式的运算主要有加、减、乘、除及求低次方根.除法实际上是分母实数化的过程.由题意利用复数的运算法则计算所给的复数即可.对于此类问题,要熟记下列公式:设,则,.
    2.【答案】D
    【解析】由.
    故选D.
    【名师点睛】本题考查复数的基本运算,处理技巧在于变形成除法运算形式.求解时,需对运算公式进行变形,再进行化简即可.
    3.【答案】B
    【解析】复数是纯虚数,则或,所以“复数是纯虚数”不是“”的充分条件;
    当时,复数为,是纯虚数,“复数是纯虚数”是“”的必要条件,
    所以“复数是纯虚数”是“”的必要不充分条件.
    故选B.
    【名师点睛】本题考查复数的基本概念,属于基础题,直接利用复数的基本概念以及充要条件判断即可.求解时,先求得“复数是纯虚数”时的值,再根据充分、必要条件的判断依据,判断出正确选项.
    4.【答案】A
    【解析】,所以,故选A.
    【名师点睛】本题考查复数运算,共轭复数及其坐标表示.属于基础题.求解时,化简计算出,写出其共轭复数,即可选出答案.
    5.【答案】C
    【解析】是纯虚数,所以,故选C.
    6.【答案】D
    【解析】因为且,
    所以,所以,
    故选D.
    【名师点睛】本题考查了复数的基本运算,复数的模,复数相等的概念,属基础题.求解时,先由复数相等的定义得到,再求值.
    7.【答案】D
    【解析】设z=1+mi(m∈R),则||=||,解得m.∴z=1.故选D.
    【名师点睛】本题主要考查复数的定义以及复数模的公式应用.求解时,由已知设z=1+mi(m∈R),代入,再由模长为2列式求得m值,则z可求.
    8.【答案】C
    【解析】因为,,复数的实部与虚部的和为,
    所以,故选C.
    【名师点睛】本题考查复数的四则运算及实部、虚部的概念,属于基础题.根据复数的乘法运算和复数的概念求解.
    9.【答案】A
    【解析】∵(2a+i)(1+3i)=3+bi,∴2a﹣3+(6a+1)i=3+bi,
    ∴,解得a=3,b=19,
    ∴a+b=3+19=22,
    故选A.
    【名师点睛】本题考查复数代数形式的乘除运算,考查了复数相等的条件,是基础题.求解时,直接利用复数的乘法运算及复数相等的条件列式求得a,b的值.
    10.【答案】A
    【解析】若复数()是纯虚数,
    根据纯虚数的定义有:,
    则复数()不是纯虚数,,
    故选A.
    【名师点睛】本题考查虚数的分类,属于基础题.求解时,先解出复数()是纯虚数时的值,即可得出答案.
    11.【答案】A
    【解析】依题意,复数是关于的方程的一个根,
    可得,即,
    所以,解得,所以,故选A.
    【名师点睛】本题主要考查了复数方程的应用,以及复数相等的充要条件的应用,着重考查了推理与运算能力,属于基础题.求解时,由是关于的方程的一个根,代入方程化简得,根据复数相等的充要条件,列出方程组,即可求解.
    12.【答案】B
    【解析】∵复数z1,z2在复平面内的对应点关于实轴对称,,∴,
    则.
    本题选择B选项.
    13.【答案】D
    【解析】对于A,若,则,所以为真;
    对于B,若,则和互为共轭复数,所以为真;
    对于C,设,若,则,
    ,所以为真;
    对于D,若,则为真,而,所以为假.
    故选D.
    14.【答案】B
    【解析】选项A中,当时,复数是纯虚数,故错误;
    选项B中,时,复数,为纯虚数,故正确;
    选项C中,是纯虚数,则,即,得,故错误;
    选项D中,没有给出为实数,当,时,也可以是虚数,故错误.
    所以选B项.
    【名师点睛】本题考查复数的定义和纯虚数的概念,判断命题的正确,属于简单题.求解时,分别对四个选项进行判断,得到正确的选项.
    15.【答案】C
    【解析】由题意,=cs+isin,
    ∴,
    ∴表示的复数的模为.
    故选C.
    【名师点睛】本题考查复数代数形式的乘除运算,考查了复数模的求法,是基础题.直接由题意可得,再由复数模的计算公式得答案.
    16.【答案】1
    【解析】,即该复数的模长为1.
    故答案为1.
    17.【答案】
    【解析】,因此,复数的虚部为.
    故答案为:.
    【名师点睛】本题考查复数的虚部的求解,考查复数的乘法运算,考查计算能力,属于基础题.求解时,利用复数的乘法法则将复数表示为一般形式,可得出该复数的虚部.
    18.【答案】
    【解析】由题得,若在复平面内对应的点位于第一象限,则且,解得,即的取值范围为.
    19.【答案】
    【解析】因为= ,其为纯虚数,所以,解得=1.故答案为.
    20.【答案】4
    【解析】∵,∴,
    ∵表示满足的最小正整数,∴当时满足第一次成立,∴,
    故答案为.
    直通高考
    1.【答案】D
    【解析】由题,则,故选D.
    2.【分析】本题专题为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x,y)和点(0,1)之间的距离为1,可选正确答案为C.
    【答案】C
    【解析】由题可得则.故选C.
    3.【答案】C
    【解析】由得则对应的点(-3,-2)位于第三象限.故选C.
    4.【答案】D
    【解析】.故选D.
    【名师点睛】本题考查复数的除法的运算,渗透了数学运算素养.采取运算法则法,利用方程思想解题.
    5.【答案】B
    【解析】,∴共轭复数为,故选B.
    6.【答案】C
    【解析】因为,
    所以,故选C.
    7.【答案】D
    【解析】由题可得,故选D.
    8.【答案】D
    【解析】,故选D.
    9.【答案】D
    【解析】的共轭复数为,
    对应点为,在第四象限.故选D.
    【名师点睛】此题考查复数的四则运算,属于送分题,解题时注意审清题意,切勿不可因简单导致马虎丢分.将复数化为最简形式,求其共轭复数,找到共轭复数在复平面的对应点,判断其所在象限.
    10.【答案】B
    【解析】令,
    则由得,所以,故正确;
    当时,因为,而知,故不正确;
    当时,满足,但,故不正确;
    对于,因为实数的共轭复数是它本身,也属于实数,故正确.
    故选B.
    【名师点睛】分式形式的复数,分子、分母同乘以分母的共轭复数,化简成的形式进行判断,共轭复数只需实部不变,虚部变为原来的相反数即可.
    11.【答案】D
    【解析】由复数除法的运算法则有:,故选D.
    【名师点睛】复数的代数形式的运算主要有加、减、乘、除.除法实际上是分母实数化的过程.在做复数的除法时,要注意利用共轭复数的性质:若z1,z2互为共轭复数,则z1·z2=|z1|2=|z2|2,通过分子、分母同乘以分母的共轭复数将分母实数化.
    12.【答案】C
    【解析】由题意可得,由复数求模的法则可得,
    则.故选C.
    【名师点睛】共轭与模是复数的重要性质,运算性质有:
    (1);(2);(3);
    (4);(5);(6).
    13.【答案】B
    【解析】,
    因为对应的点在第二象限,所以,解得,
    故实数a的取值范围是,故选B.
    14.【分析】先化简复数,再利用复数模的定义求所给复数的模.
    【答案】
    【解析】.
    15.【分析】本题先计算,而后求其模.或直接利用模的性质计算. 容易题,注重基础知识、运算求解能力的考查.
    【答案】
    【解析】由题可得.
    16.【分析】本题根据复数的乘法运算法则先求得,然后根据复数的概念,令实部为0即得a的值.
    【答案】
    【解析】,
    令,解得.
    【名师点睛】本题主要考查复数的运算法则,虚部的定义等知识,意在考查学生的转化能力和计算求解能力.
    17.【答案】4–i
    【解析】由复数的运算法则得:.
    【名师点睛】本题主要考查复数的运算法则及其应用,意在考查学生的转化能力和计算求解能力.由题意结合复数的运算法则整理计算即可求得最终结果.
    18.【答案】2
    【解析】因为,则,则的实部为.
    19.【答案】
    【解析】因为为实数,
    所以,解得.
    20.【答案】5 2
    【解析】由题意可得,
    则,解得,
    则.
    21.【答案】
    【解析】,故答案为.
    【名师点睛】(1)对于复数的四则运算,要切实掌握其运算技巧和常规思路,如.
    (2)其次要熟悉复数相关概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为.

    相关学案

    最新高考理数考点一遍过讲义 考点55 正态分布:

    这是一份最新高考理数考点一遍过讲义 考点55 正态分布,共30页。学案主要包含了正态曲线,正态分布等内容,欢迎下载使用。

    最新高考理数考点一遍过讲义 考点39 双曲线:

    这是一份最新高考理数考点一遍过讲义 考点39 双曲线,共37页。学案主要包含了双曲线的定义和标准方程,双曲线的几何性质等内容,欢迎下载使用。

    最新高考理数考点一遍过讲义 考点38 椭圆:

    这是一份最新高考理数考点一遍过讲义 考点38 椭圆,共35页。学案主要包含了椭圆的定义,椭圆的标准方程,椭圆的图形及其简单几何性质,必记结论等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map