所属成套资源:高考理数一轮复习 考点一遍过(全国通用)
最新高考理数考点一遍过讲义 考点29 空间几何体的表面积与体积
展开
这是一份最新高考理数考点一遍过讲义 考点29 空间几何体的表面积与体积,共42页。学案主要包含了柱体,球的表面积和体积等内容,欢迎下载使用。
课本上和老师讲解的例题,一般都具有一定的典型性和代表性。要认真研究,深刻理解,要透过“样板”,学会通过逻辑思维,灵活运用所学知识去分析问题和解决问题,特别是要学习分析问题的思路、解决问题的方法,并能总结出解题的规律。
2、精练习题
复习时不要搞“题海战术”,应在老师的指导下,选一些源于课本的变式题,或体现基本概念、基本方法的基本题,通过解题来提高思维能力和解题技巧,加深对所学知识的深入理解。在解题时,要独立思考,一题多思,一题多解,反复玩味,悟出道理。
3、加强审题的规范性
每每大考过后,总有同学抱怨没考好,纠其原因是考试时没有注意审题。审题决定了成功与否,不解决这个问题势必影响到高考的成败。那么怎么审题呢? 应找出题目中的已知条件 ;善于挖掘题目中的隐含条件 ;认真分析条件与目标的联系,确定解题思路 。
4、重视错题
“错误是最好的老师”,但更重要的是寻找错因,及时进行总结,三五个字,一两句话都行,言简意赅,切中要害,以利于吸取教训,力求相同的错误不犯第二次。
专题29 空间几何体的表面积与体积
了解球、棱柱、棱锥、台的表面积和体积的计算公式.
一、柱体、锥体、台体的表面积
1.旋转体的表面积
2.多面体的表面积
多面体的表面积就是各个面的面积之和,也就是展开图的面积.
棱锥、棱台、棱柱的侧面积公式间的联系:
二、柱体、锥体、台体的体积
1.柱体、锥体、台体的体积公式
2.柱体、锥体、台体体积公式间的关系
3.必记结论
(1)一个组合体的体积等于它的各部分体积之和或差;
(2)等底面面积且等高的两个同类几何体的体积相等.
三、球的表面积和体积
1.球的表面积和体积公式
设球的半径为R,它的体积与表面积都由半径R唯一确定,是以R为自变量的函数,其表面积公式为,即球的表面积等于它的大圆面积的4倍;其体积公式为.
2.球的切、接问题(常见结论)
(1)若正方体的棱长为,则正方体的内切球半径是;正方体的外接球半径是;与正方体所有棱相切的球的半径是.
(2)若长方体的长、宽、高分别为,,,则长方体的外接球半径是.
(3)若正四面体的棱长为,则正四面体的内切球半径是;正四面体的外接球半径是;与正四面体所有棱相切的球的半径是.
(4)球与圆柱的底面和侧面均相切,则球的直径等于圆柱的高,也等于圆柱底面圆的直径.
(5)球与圆台的底面与侧面均相切,则球的直径等于圆台的高.
考向一 柱体、锥体、台体的表面积
1.已知几何体的三视图求其表面积,一般是先根据三视图判断空间几何体的形状,再根据题目所给数据与几何体的表面积公式,求其表面积.
2.多面体的表面积是各个面的面积之和,组合体的表面积应注意重合部分的处理,以确保不重复、不遗漏.
3.求多面体的侧面积时,应对每一个侧面分别求解后再相加;求旋转体的侧面积时,一般要将旋转体展开为平面图形后再求面积.
典例1 某几何体的三视图如图所示,则该几何体的表面积为
A.B.
C.D.
【答案】D
【解析】由三视图可知,该几何体为两个半圆柱构成,
其表面积为,
故选D.
【名师点睛】本题考查由三视图求表面积,本题的图形结构比较简单,易错点是两个几何体重叠的部分忘记去掉,求表面积时常会设计此种陷阱.
典例2 若正四棱柱的底边长为2,与底面成45°角,则三棱锥的表面积为
A. B.
C. D.
【答案】A
【解析】由与底面成45°角,且正四棱柱的底边长为2,可知棱柱的高为,故三棱锥的表面积为
故答案为A.
1.某几何体的三视图如图所示,则该几何体的表面积为
A.46B.48
C.50D.52
2.榫卯是在两个木构件上所采用的一种凹凸结合的连接方式,凸出部分叫榫,凹进部分叫卯,榫和卯咬合,起到连接作用,代表建筑有:北京的紫禁城、天坛祈年殿、山西悬空寺等,如图所示是一种榫卯的三视图,其表面积为
A.192 B.186
C.180 D.198
考向二 柱体、锥体、台体的体积
空间几何体的体积是每年高考的热点之一,题型既有选择题、填空题,也有解答题,难度较小,属容易题. 求柱体、锥体、台体体积的一般方法有:
(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.
(2)若所给定的几何体的体积不能直接利用公式得出,则常用等体积法、割补法等方法进行求解.
①等体积法:一个几何体无论怎样转化,其体积总是不变的.如果一个几何体的底面面积和高较难求解时,我们可以采用等体积法进行求解.等体积法也称等积转化或等积变形,它是通过选择合适的底面来求几何体体积的一种方法,多用来解决有关锥体的体积,特别是三棱锥的体积.
②割补法:运用割补法处理不规则的空间几何体或不易求解的空间几何体的体积计算问题,关键是能根据几何体中的线面关系合理选择截面进行切割或者补成规则的几何体.要弄清切割后或补形后的几何体的体积是否与原几何体的体积之间有明显的确定关系,如果是由几个规则的几何体堆积而成的,其体积就等于这几个规则的几何体的体积之和;如果是由一个规则的几何体挖去几个规则的几何体而形成的,其体积就等于这个规则的几何体的体积减去被挖去的几个几何体的体积.因此,从一定意义上说,用割补法求几何体的体积,就是求体积的“加、减”法.
(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.
典例3 如图所示的网格是由边长为1的小正方形构成,粗线画出的是某几何体的三视图,则该几何体的体积为
A.B.
C.D.
【答案】D
【解析】根据三视图可得,该几何体是三棱柱割去一个三棱锥所得的几何体,如图所示:
所以其体积为.
故选D.
典例4 如图,几何体EF−ABCD中,DE⊥平面ABCD,CDEF是正方形,ABCD为直角梯形,AB//CD,AD⊥DC,是腰长为22的等腰直角三角形.
(1)求证:BC⊥AF;
(2)求几何体EF−ABCD的体积.
【解析】(1)因为是腰长为22的等腰直角三角形,
所以AC⊥BC.
因为DE⊥平面ABCD,所以DE⊥BC.
又DE//CF,所以CF⊥BC,
又AC∩CF=C,所以BC⊥平面ACF.
所以BC⊥AF.
(2)因为是腰长为22的等腰直角三角形,
所以AC=BC=22,AB=AC2+BC2=4,
所以AD=BCsin∠ABC=22×sin45°=2,CD=AB−BCcs∠ABC=4−22×cs45°=2.
所以DE=EF=CF=2,
由勾股定理得AE=AD2+DE2=22,
因为DE⊥平面ABCD,
所以DE⊥AD.
又AD⊥DC,DE∩DC=D,
所以AD⊥平面CDEF.
所以
.
3.已知一个几何体的三视图如图所示,且该几何体的体积为,则的值为
A.B.
C.D.
4.如图,在斜三棱柱中,底面是边长为的正三角形,为棱的中点,,,.
(1)求证:平面;
(2)求斜三棱柱的体积.
考向三 球的表面积和体积
1.确定一个球的条件是球心和球的半径,已知球的半径可以利用公式求球的表面积和体积;反之,已知球的体积或表面积也可以求其半径.
2.球与几种特殊几何体的关系:(1)长方体内接于球,则球的直径是长方体的体对角线长;(2)正四面体的外接球与内切球的球心重合,且半径之比为3∶1;(3)直棱柱的外接球:找出直棱柱的外接圆柱,圆柱的外接球就是所求直棱柱的外接球.特别地,直三棱柱的外接球的球心是上、下底面三角形外心连线的中点;(4)球与圆柱的底面和侧面均相切,则球的直径等于圆柱的高,也等于圆柱底面圆的直径;(5)球与圆台的底面和侧面均相切,则球的直径等于圆台的高.
3.与球有关的实际应用题一般涉及水的容积问题,解题的关键是明确球的体积与水的容积之间的关系,正确建立等量关系.
4.有关球的截面问题,常画出过球心的截面圆,将空间几何问题转化为平面中圆的有关问题解决.球心到截面的距离与球的半径及截面圆的半径之间满足关系式:.
典例5 《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥为鳖臑, 平面,,,三棱锥的四个顶点都在球的球面上,则球的表面积为
A.B.
C.D.
【答案】C
【解析】如图,由题可知,底面为直角三角形,且,
则,
则球的直径,
则球的表面积.
故选C.
典例6 四棱锥的底面为正方形,底面,,若该四棱锥的所有顶点都在体积为的同一球面上,则的长为
A.3B.2
C.1D.
【答案】C
【解析】连接AC、BD交于点E,取PC的中点O,连接OE,可得OE∥PA,
∵底面,∴OE⊥底面ABCD,
可得O到四棱锥的所有顶点的距离相等,即O为球心,设球的半径为R,
可得,则,
解得PA=1.
故选C.
5.一个几何体的三视图如图所示,其中俯视图与左视图均为半径是的圆,则这个几何体的表面积是
A. B.
C. D.
6.已知是某球面上不共面的四点,且,, ,则此球的体积为
A. B.
C. D.
考向四 空间几何体表面积和体积的最值
求解空间几何体表面积和体积的最值问题有两个思路:
一是根据几何体的结构特征和体积、表面积的计算公式,将体积或表面积的最值转化为平面图形中的有关最值,根据平面图形的有关结论直接进行判断;
二是利用基本不等式或是建立关于表面积和体积的函数关系式,然后利用函数的方法或者利用导数方法解决.
典例7 如图,A1A是圆柱的母线,AB是圆柱底面圆的直径,C是底面圆周上异于A,B的任意一点,A1A=AB=2.
(1)求证:BC⊥平面A1AC;
(2)求三棱锥A1-ABC的体积的最大值.
【解析】(1)因为C是底面圆周上异于A,B的任意一点,且AB是圆柱底面圆的直径,
所以BC⊥AC.
因为AA1⊥平面ABC,BC⊂平面ABC,
所以AA1⊥BC.
又AA1∩AC=A,
所以BC⊥平面AA1C.
(2)方法一:设AC=x(0
相关学案
这是一份最新高考理数考点一遍过讲义 考点24 数列的综合应用,共33页。学案主要包含了等差、等比数列的综合应用,数列与函数、不等式等的综合应用,等差、等比数列的实际应用,数列中的探索性问题,数列的求和等内容,欢迎下载使用。
这是一份最新高考理数考点一遍过讲义 考点12 导数的应用,共38页。学案主要包含了导数与函数的单调性,利用导数研究函数的极值和最值,生活中的优化问题等内容,欢迎下载使用。
这是一份最新高考理数考点一遍过讲义 考点09 函数与方程,共34页。学案主要包含了函数的零点,二分法等内容,欢迎下载使用。