终身会员
搜索
    上传资料 赚现金

    模拟真题湖南省怀化市中考数学历年高频真题专项攻克 B卷(含答案及解析)

    立即下载
    加入资料篮
    模拟真题湖南省怀化市中考数学历年高频真题专项攻克 B卷(含答案及解析)第1页
    模拟真题湖南省怀化市中考数学历年高频真题专项攻克 B卷(含答案及解析)第2页
    模拟真题湖南省怀化市中考数学历年高频真题专项攻克 B卷(含答案及解析)第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    模拟真题湖南省怀化市中考数学历年高频真题专项攻克 B卷(含答案及解析)

    展开

    这是一份模拟真题湖南省怀化市中考数学历年高频真题专项攻克 B卷(含答案及解析),共25页。试卷主要包含了下列图像中表示是的函数的有几个,下列图形是全等图形的是等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,有三块菜地△ACD、△ABD、△BDE分别种植三种蔬菜,点D为AE与BC的交点,AD平分∠BAC,AD=DE,AB=3AC,菜地△BDE的面积为96,则菜地△ACD的面积是( )
    A.24B.27C.32D.36
    2、如图,、是的切线,、是切点,点在上,且,则等于( )
    A.54°B.58°C.64°D.68°
    3、如图,将一副三角板平放在一平面上(点D在上),则的度数为( )
    A.B.C.D.
    4、在如图所示的几何体中,从不同方向看得到的平面图形中有长方形的是( )
    A.①B.②C.①②D.①②③
    5、下列图像中表示是的函数的有几个( )
    A.1个B.2个C.3个D.4个
    6、将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=45°,那么∠BAF的大小为( )
    A.15°B.10°C.20°D.25°
    7、下列图形是全等图形的是( )
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    A.B.C.D.
    8、如图所示,一座抛物线形的拱桥在正常水位时,水面AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
    A.4米B.10米C.4米D.12米
    9、若把边长为的等边三角形按相似比进行缩小,得到的等边三角形的边长为( )
    A.B.C.D.
    10、下列语句中,不正确的是( )
    A.0是单项式B.多项式的次数是4
    C.的系数是D.的系数和次数都是1
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、若关于的不等式的解集为,则的取值范围为__.
    2、已知(n为正整数)满足:,则__________.
    3、已知关于x的一元二次方程.若此方程有两个相等的实数根,则实数k的值为______;若此方程有两个实数根,则实数k的取值范围为______.
    4、在日常生活和生产中有很多现象可以用数学知识进行解释.如图,要把一根挂衣帽的挂钩架水平固定在墙上,至少需要钉______个钉子.用你所学数学知识说明其中的道理______.
    5、已知:直线与直线的图象交点如图所示,则方程组的解为______.
    三、解答题(5小题,每小题10分,共计50分)
    1、小欣在学习了反比例函数的图象与性质后,进一步研究了函数的图象与性质.其研究过程如下:
    (1)绘制函数图象.
    ①列表:下表是x与y的几组对应值,其中______;
    ②描点:根据表中的数值描点,请补充描出点;
    ③连线:用平滑的曲线顺次连接各点,请把图象补充完整.
    (2)探究函数性质.
    判断下列说法是否正确(正确的填“√”,错误的填“×”).
    ①函数值y随x的增大而减小; ( )
    ②函数图象关于原点对称;( )
    ③函数图象与直线没有交点.( )
    (3)请你根据图象再写一条此函数的性质:______.
    2、如图1,在平面直角坐标系中,已知A(8,0),B(0,4),点P从点A出发,沿AO方向以2个单位长度/秒的速度运动,点Q从点O出发,沿OB方向以1个单位长度/秒的速度运动,当点P到点O的位置时,两点停止运动.设运动时间为t秒.
    (1)当t为何值时,△POQ的面积为3;
    (2)当t为何值时,△POQ与△AOB相似;
    (3)如图2,将线段BA绕点B逆时针旋转45°至BD,请直接写出点D的坐标.
    3、解方程:.
    4、如图,直线l:与y轴交于点G,直线l上有一动点P,过点P作y轴的平行线PE,过点G作x轴的平行线GE,它们相交于点E.将△PGE沿直线l翻折得到△PGE′,点E的对应点为E′.
    (1)如图1,请利用无刻度的直尺和圆规在图1中作出点E的对应点E′;
    (2)如图2,当点E的对应点E′落在x轴上时,求点P的坐标;
    (3)如图3,直线l上有A,B两点,坐标分别为(-2,-6),(4,6),当点P从点A运动到点B的过程中,点E′也随之运动,请直接写出点E′的运动路径长为____________.
    5、将两块完全相同的且含角的直角三角板和按如图所示位置放置,现将绕A点按逆时针方向旋转.如图,与交于点M,与交于点N,与交于点P.
    (1)在旋转过程中,连接,求证:所在的直线是线段的垂直平分线.
    (2)在旋转过程中,是否能成为直角三角形?若能,直接写出旋转角的度数;若不能,说· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    明理由.
    -参考答案-
    一、单选题
    1、C
    【分析】
    利用三角形的中线平分三角形的面积求得S△ABD=S△BDE=96,利用角平分线的性质得到△ACD与△ABD的高相等,进一步求解即可.
    【详解】
    解:∵AD=DE,S△BDE=96,
    ∴S△ABD=S△BDE=96,
    过点D作DG⊥AC于点G,过点D作DF⊥AB于点F,
    ∵AD平分∠BAC,
    ∴DG=DF,
    ∴△ACD与△ABD的高相等,
    又∵AB=3AC,
    ∴S△ACD=S△ABD=.
    故选:C.
    【点睛】
    本题考查了角平分线的性质,三角形中线的性质,解题的关键是灵活运用所学知识解决问题.
    2、C
    【分析】
    连接,,根据圆周角定理可得,根据切线性质以及四边形内角和性质,求解即可.
    【详解】
    解:连接,,如下图:

    ∵PA、PB是的切线,A、B是切点

    ∴由四边形的内角和可得:
    故选C.
    【点睛】
    此题考查了圆周角定理,切线的性质以及四边形内角和的性质,解题的关键是熟练掌握相关基本性质.
    3、B
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【分析】
    根据三角尺可得,根据三角形的外角性质即可求得
    【详解】
    解:
    故选B
    【点睛】
    本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键.
    4、C
    【分析】
    分别找出每个图形从三个方向看所得到的图形即可得到答案.
    【详解】
    ①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,符合要求;
    ②圆柱从左面和正面看都是长方形,从上边看是圆,符合要求;
    ③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,不符合要求;故选:C.
    【点睛】
    本题考查了从不同方向看几何体,掌握定义是关键.注意正方形是特殊的长方形.
    5、A
    【分析】
    函数就是在一个变化过程中有两个变量x,y,当给定一个x的值时,y由唯一的值与之对应,则称y是x的函数,x是自变量,注意“y有唯一性”是判断函数的关键.
    【详解】
    解:根据函数的定义,每给定自变量x一个值都有唯一的函数值y与之相对应,
    故第2个图符合题意,其它均不符合,
    故选:A.
    【点睛】
    本题考查函数图象的识别,判断方法:做垂直x轴的直线在左右平移的过程中,与函数图象只会有一个交点.
    6、A
    【分析】
    利用DE∥AF,得∠CDE=∠CFA=45°,结合∠CFA=∠B+∠BAF计算即可.
    【详解】
    ∵DE∥AF,
    ∴∠CDE=∠CFA=45°,
    ∵∠CFA=∠B+∠BAF,∠B=30°,
    ∴∠BAF=15°,
    故选A.
    【点睛】
    本题考查了平行线的性质,三角形外角的性质,三角板的意义,熟练掌握平行线的性质是解题的关键.
    7、D
    【详解】
    解:A、不是全等图形,故本选项不符合题意;
    B、不是全等图形,故本选项不符合题意;
    C、不是全等图形,故本选项不符合题意;
    D、全等图形,故本选项符合题意;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    故选:D
    【点睛】
    本题主要考查了全等图形的定义,熟练掌握大小形状完全相同的两个图形是全等图形是解题的关键.
    8、B
    【分析】
    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax²,由此可得A(﹣10,﹣4),B(10,﹣4),即可求函数解析式为y=﹣ x²,再将y=﹣1代入解析式,求出C、D点的横坐标即可求CD的长.
    【详解】
    解:以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
    设抛物线的解析式为y=ax2,
    ∵O点到水面AB的距离为4米,
    ∴A、B点的纵坐标为﹣4,
    ∵水面AB宽为20米,
    ∴A(﹣10,﹣4),B(10,﹣4),
    将A代入y=ax2,
    ﹣4=100a,
    ∴a=﹣,
    ∴y=﹣x2,
    ∵水位上升3米就达到警戒水位CD,
    ∴C点的纵坐标为﹣1,
    ∴﹣1=﹣x2,
    ∴x=±5,
    ∴CD=10,
    故选:B.
    【点睛】
    本题考查二次函数在实际问题中的应用,找对位置建立坐标系再求解二次函数是关键.
    9、A
    【分析】
    直接根据位似图形的性质求解即可
    【详解】
    解:∵把边长为的等边三角形按相似比进行缩小,
    ∴得到的新等边三角形的边长为:
    故选:A
    【点睛】
    本题主要考查了根据位似图形的性质求边长,熟练掌握位似图形的性质是解答本题的关键.
    10、D
    【分析】
    分别根据单独一个数也是单项式、多项式中每个单项式的最高次数是这个多项式的次数、单项式中的数字因数是这个单项式的系数、单项式中所有字母的指数和是这个单项式的次数解答即可.
    【详解】
    解:A、0是单项式,正确,不符合题意;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    B、多项式的次数是4,正确,不符合题意;
    C、的系数是,正确,不符合题意;
    D、的系数是-1,次数是1,错误,符合题意,
    故选:D.
    【点睛】
    本题考查单项式、单项式的系数和次数、多项式的次数,理解相关知识的概念是解答的关键.
    二、填空题
    1、
    【解析】
    【分析】
    根据不等式的性质3,不等式的两边同乘或除以同一个负数,不等号的方向改变,可得答案.
    【详解】
    解:不等式的解集为,


    故答案为:.
    【点睛】
    本题考查了一元一次不等式的性质,解一元一次不等式,掌握不等式性质,不等式的两边同时乘以或除以一个负数,不等号的方向发生改变是解题关键.
    2、
    【解析】
    【分析】
    由 ,再依次计算 从而可得答案.
    【详解】
    解: ,




    故答案为:
    【点睛】
    本题考查的是已知字母的值,求解代数式的值,理解运算法则的含义并进行计算是解本题的关键.
    3、 9
    【解析】
    【分析】
    根据根的判别式的意义得Δ=62-4k=0,解方程即可;根据根的判别式的意义得Δ=62-4k≥0,然后解不等式即可.
    【详解】
    解:Δ=62-4k=36-4k,
    ∵方程有两个相等的实数根,
    ∴Δ=36-4k=0,
    解得:k=9;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∵方程有两个实数根,
    ∴Δ=36-4k≥0,
    解得:k≤9;
    故答案为:9;k≤9.
    【点睛】
    本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2-4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.
    4、 2 两点确定一条直线
    【解析】
    【分析】
    根据两点确定一条直线解答.
    【详解】
    解:至少需要钉2个钉子,所学的数学知识为:两点确定一条直线,
    故答案为:2,两点确定一条直线.
    【点睛】
    此题考查了线段的性质:两点确定一条直线,熟记性质是解题的关键.
    5、
    【解析】
    【分析】
    根据函数图象与二元一次方程组的关系,求方程组的解,就是求两方程所表示的两一次函数图象交点的坐标,从而得出答案.
    【详解】
    解:∵函数y=x-b与函数y=mx+6的交点坐标是(2,3),
    ∴方程组的解为.
    故答案为.
    【点睛】
    本题主要考查了一次函数与二元一次方程组的关系,比较简单,熟悉交点坐标就是方程组的解是解题的关键.
    三、解答题
    1、
    (1)①1;②描点见解析;③连线见解析
    (2)①×;②×;③√
    (3)当时,y随x的增大而减小
    【分析】
    (1)①将x=0代入即得m的值;②描出(0,1)即可;③把描出的点用平滑的曲线顺次连接即可;
    (2)根据图像数形结合即可判断.
    (3)根据图像再写一条符合反比例函数特点的性质即可.
    (1)
    ①解:将代入解析式中解得;
    ②描点如图所示③补充图像如图所示:
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (2)
    根据函数图像可得:
    ①每一个分支上的函数值y随x的增大而减小,故①错误,应为×;
    ②图像关于(-1,0)对称,故②错误,应为×;
    ③x=-1时,无意义,函数图像与直线x=-1没有交点,应为√.
    (3)
    当时,y随x的增大而减小.
    【点睛】
    本题考查函数的图形及性质,解题的关键是熟练掌握研究函数的方法用列表、描点、连线作出图像,再数形结合研究函数性质.
    2、
    (1)t=1或3秒时,△POQ的面积为3
    (2)t=2或秒时,△POQ与△AOB相似
    (3)D(6,4+2)
    【分析】
    (1)由题意知:OQ=t,OP=8-2t,则×t×(8-2t)=3,解方程即可;
    (2)分或两种情形,分别代入计算;
    (3)过点A作AE⊥AB交BD的延长线于E,作EF⊥x轴于F,利用K型全等求出点E的坐标,从而得出BE的函数解析式,再利用两点间距离公式可表示出BD,从而解决问题.
    (1)
    解:(1)由题意知:OQ=t,OP=8-2t,
    ∴×t×(8-2t)=3,
    解得t=1或3,
    ∴t=1或3时,△POQ的面积为3;
    (2)
    当△POQ与△AOB相似时,
    ∵∠POQ=∠AOB,
    ∴或,
    ∴或,
    解得t=2或,
    ∴t=2或时,△POQ与△AOB相似;
    (3)
    如图,过点A作AE⊥AB交BD的延长线于E,作EF⊥x轴于F,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∵将线段BA绕点B逆时针旋转45°至BD,
    ∴∠ABD=45°,
    ∴△ABE是等腰直角三角形,
    ∴∠BAE=90°,AB=AE,
    ∴∠BAO+∠EAF=90°,
    ∵∠BAO+∠ABO=90°,
    ∴∠EAF=∠ABO,
    在△AOB和△EFA中

    ∴△AOB≌△EFA(AAS),
    ∴OA=EF=8,AF=OB=4,
    ∴E(12,8),
    设直线BE的解析式为y=kx+4,
    将E(12,8)代入得12k+4=8,
    解得k=,
    ∴y=x+4,
    设D(m,m+4),
    ∵BD=BA==4,
    ∴m2+(m+4-4)2=(4)2,
    解得m=6(负值舍去),
    ∴D(6,4+2).
    【点睛】
    本题考查了相似三角形的判定与性质,等腰直角三角形的性质,全等三角形的判定与性质,待定系数法求函数解析式等知识,求出直线BD的函数解析式是解题的关键.
    3、
    【分析】
    去分母,移项合并同类项,系数化为1即可求解.
    【详解】

    去分母得:.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    去括号得:
    移项合并同类项得:.
    系数化为1得:.
    【点睛】
    本题考查一元一次方程的解法,先去分母、移项合并、化系数为1.属于基础题.
    4、
    (1)见解析
    (2)
    (3)6
    【分析】
    (1)作出过点E的l的垂线即可解决;
    (2)设直线l交x轴于点D,则由直线解析式可求得点D、点G的坐标,从而可得OD的长.由对称性及平行可得,设点P的坐标为(a,2a-2),则可得点E的坐标,由及勾股定理可求得点的坐标;
    (3)分别过点A、B作y轴的平行线,与过点G的垂直于y轴的直线分别交于点C、M,则点E在线段CM上运动,根据对称性知,点运动路径的长度等于CM的长,故只要求得CM的长即可,由A、B两点的坐标即可求得CM的长.
    (1)
    所作出点E的对应点E′如下图所示:
    (2)
    设直线l交x轴于点D
    在y=2x-2中,令y=0,得x=1;令x=0,得y=-2
    则点D、点G的坐标分别为(1,0)、(0,-2)
    ∴OD=1,OG=2
    由对称性的性质得:,
    ∵GE∥x轴




    设点P的坐标为(a,2a-2),其中a>0,则可得点E的坐标为(a,-2)
    ∴EG=a


    在Rt△中,由勾股定理得:
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    解得:
    当时,
    所以点P的坐标为
    (3)
    分别过点A、B作y轴的平行线,与过点G的垂直于y轴的直线分别交于点C、M,则点E在线段CM上运动,根据对称性知,点运动路径的长度等于CM的长
    ∵A,B两点的坐标分别为(-2,-6),(4,6)
    ∴CM=4-(-2)=6
    则点运动路径的长为6
    故答案为:6
    【点睛】
    本题主要考查了一次函数的图象与性质、折叠的性质、尺规作图等知识,一次函数的性质及折叠的性质的应用是本题的关键.
    5、
    (1)见解析;
    (2)能成为直角三角形,=30°或60°
    【分析】
    (1)由全等三角形的性质可得∠AEF=∠ACB,AE=AC,根据等腰三角形的判定与性质证明∠PEC=∠PCE,PE=PC,然后根据线段垂直平分线的判定定理即可证得结论;
    (2)分∠CPN=90°和∠CNP=90°,利用旋转的性质和三角形的内角和定理求解即可.
    (1)
    证明:∵两块是完全相同的且含角的直角三角板和,
    ∴AE=AC,∠AEF=∠ACB=30°,∠F=60°,
    ∴∠AEC=∠ACE,
    ∴∠AEC-∠AEF=∠ACE-∠ACB,
    ∴∠PEC=∠PCE,
    ∴PE=PC,又AE=AC,
    ∴所在的直线是线段的垂直平分线.
    (2)
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    解:在旋转过程中,能成为直角三角形,
    由旋转的性质得:∠FAC= ,
    当∠CNP=90°时,∠FNA=90°,又∠F=60°,
    ∴=∠FAC=180°-∠FNA-∠F=180°-90°-60°=30°;
    当∠CPN=90°时,∵∠NCP=30°,
    ∴∠PNC=180°-90°-30°=60°,即∠FNA=60°,
    ∵∠F=60°,
    ∴=∠FAC=180°-∠FNA-∠F=180°-60°-60°=60°,
    综上,旋转角的的度数为30°或60°.
    【点睛】
    本题考查直角三角板的度数、全等三角形的性质、等腰三角形的判定与性质、线段垂直平分线的判定、旋转性质、对顶角相等、三角形的内角和定理,熟练掌握相关知识的联系与运用是解答的关键.
    x

    0
    1
    2

    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    y

    3
    2
    m

    相关试卷

    湖南省中考数学历年高频真题专项攻克 B卷(含答案解析):

    这是一份湖南省中考数学历年高频真题专项攻克 B卷(含答案解析),共30页。

    湖南省中考数学历年高频真题专项攻克 B卷(含答案详解):

    这是一份湖南省中考数学历年高频真题专项攻克 B卷(含答案详解),共29页。试卷主要包含了下列图标中,轴对称图形的是,下列运算正确的是,下列方程中,解为的方程是等内容,欢迎下载使用。

    湖南省怀化市中考数学历年高频真题专项攻克 B卷(含答案详解):

    这是一份湖南省怀化市中考数学历年高频真题专项攻克 B卷(含答案详解),共30页。试卷主要包含了下列图形是全等图形的是,如图,下列条件中不能判定的是,一元二次方程的根为等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map