【真题汇总卷】湖南省中考数学历年高频真题专项攻克 B卷(含答案详解)
展开
这是一份【真题汇总卷】湖南省中考数学历年高频真题专项攻克 B卷(含答案详解),共26页。试卷主要包含了如图,A,下列式子中,与是同类项的是,和按如图所示的位置摆放,顶点B等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、代数式的意义是( )
A.a与b的平方和除c的商B.a与b的平方和除以c的商
C.a与b的和的平方除c的商D.a与b的和的平方除以c的商
2、如图所示,一座抛物线形的拱桥在正常水位时,水面AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
A.4米B.10米C.4米D.12米
3、用符号表示关于自然数x的代数式,我们规定:当x为偶数时,;当x为奇数时,.例如:,.设,,,…,.以此规律,得到一列数,,,…,,则这2022个数之和等于( )
A.3631B.4719C.4723D.4725
4、如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若,则这个正多边形的边数为( )
A.10B.11C.12D.13
5、如图,①,②,③,④可以判定的条件有( ).
A.①②④B.①②③C.②③④D.①②③④
6、有一个边长为1的正方形,以它的一条边为斜边,向外作一个直角三角形,再分别以直角三角形的两条直角边为边,向外各作一个正方形,称为第一次“生长”(如图1);再分别以这两个正方形的边为斜边,向外各自作一个直角三角形,然后分别以这两个直角三角形的直角边为边,向外各作一个正方形,称为第二次“生长”(如图2)……如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2021次后形成的图形中所有的正方形的面积和是( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.1B.2020C.2021D.2022
7、为了完成下列任务,你认为最适合采用普查的是( )
A.了解某品牌电视的使用寿命B.了解一批西瓜是否甜
C.了解某批次烟花爆竹的燃放效果D.了解某隔离小区居民新冠核酸检查结果
8、下列式子中,与是同类项的是( )
A.abB.C.D.
9、和按如图所示的位置摆放,顶点B、C、D在同一直线上,,,.将沿着翻折,得到,将沿着翻折,得,点B、D的对应点、与点C恰好在同一直线上,若,,则的长度为( ).
A.7B.6C.5D.4
10、东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程(米),(米)与运动时间(分)之间的函数关系如图所示,下列结论中错误的是( )
A.两人前行过程中的速度为180米/分B.的值是15,的值是2700
C.爸爸返回时的速度为90米/分D.运动18分钟或31分钟时,两人相距810米
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、两个相似多边形的周长比是3:4,其中较小的多边形的面积为,则较大的多边形的面积为______cm2.
2、若代数式的值是3,则多项式的值是______.
3、两个人玩“石头、剪刀、布”游戏,在保证游戏公平的情况下,随机出手一次,两人手势不相同的概率是___________.
4、如图所示,已知直线,且这两条平行线间的距离为5个单位长度,点为直线上一定点,以为圆心、大于5个单位长度为半径画弧,交直线于、两点.再分别以点、为圆心、大于长为半径画弧,两弧交于点,作直线,交直线于点.点为射线上一动点,作点关于直线的对称点,当点到直线的距离为4个单位时,线段的长度为______.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
5、如图,在矩形ABCD中,cm,cm.动点P、Q分别从点A、C以1cm/s的速度同时出发.动点P沿AB向终点B运动,动点Q沿CD向终点D运动,连结PQ交对角线AC于点O.设点P的运动时间为.
(1)当四边形APQD是矩形时,t的值为______.
(2)当四边形APCQ是菱形时,t的值为______.
(3)当是等腰三角形时,t的值为______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,三角形中,点D在上,点E在上,点F,G在上,连接.己知,,求证:.
将证明过程补充完整,并在括号内填写推理依据.
证明:∵_____________(已知)
∴(_______________________)
∴.________(____________________)
∵(已知)
∴________(等量代换)
∴(___________________)
2、先把下列各数在数轴上表示出来,再按照从小到大的顺序用“<”连接起来.
﹣2,-(﹣4),0,+(﹣1),1,﹣|﹣3|
3、已知的负的平方根是,的立方根是3,求的四次方根.
4、为庆祝中国共产党建党100周年,某中学开展“学史明理、学史增信、学史崇德、学史力行”知识竞赛,现随机抽取部分学生的成绩按“优秀”、“良好”、“及格”、“不及格”四个等级进行统计,并绘制了如图所示的扇形统计图和条形统计图(部分信息未给出).根据以上提供的信息,解答下列问题:
(1)本次调查共抽取了多少名学生?
(2)①请补全条形统计图;
②求出扇形统计图中表示“及格”的扇形的圆心角度数.
(3)若该校有2400名学生参加此次竞赛,估计这次竞赛成绩为“优秀”和“良好”等级的学生共有· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
多少名?
5、如图,在中,,.
(1)尺规作图:
①作边的垂直平分线交于点,交于点;
②连接,作的平分线交于点;(要求:保留作图痕迹,不写作法)
(2)在(1)所作的图中;求的度数.
解:∵垂直平分线段,
∴,(_________)(填推理依据)
∴,(__________)(填推理依据)
∵,∴,
∵,
∴__________,
∴__________,
∵平分,
∴__________.
-参考答案-
一、单选题
1、D
【分析】
(a+b)2表示a与b的和的平方,然后再表示除以c的商.
【详解】
解:代数式的意义是a与b的和的平方除以c的商,
故选:D.
【点睛】
此题主要考查了代数式的意义,关键是根据计算顺序描述.
2、B
【分析】
以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax²,由此可得A(﹣10,﹣4),B(10,﹣4),即可求函数解析式为y=﹣ x²,再将y=﹣1代入解析式,求出C、D点的横坐标即可求CD的长.
【详解】
解:以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
设抛物线的解析式为y=ax2,
∵O点到水面AB的距离为4米,
∴A、B点的纵坐标为﹣4,
∵水面AB宽为20米,
∴A(﹣10,﹣4),B(10,﹣4),
将A代入y=ax2,
﹣4=100a,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴a=﹣,
∴y=﹣x2,
∵水位上升3米就达到警戒水位CD,
∴C点的纵坐标为﹣1,
∴﹣1=﹣x2,
∴x=±5,
∴CD=10,
故选:B.
【点睛】
本题考查二次函数在实际问题中的应用,找对位置建立坐标系再求解二次函数是关键.
3、D
【分析】
根据题意分别求出x2=4,x3=2,x4=1,x5=4,…,由此可得从x2开始,每三个数循环一次,进而继续求解即可.
【详解】
解:∵x1=8,
∴x2=f(8)=4,
x3=f(4)=2,
x4=f(2)=1,
x5=f(1)=4,
…,
从x2开始,每三个数循环一次,
∴(2022-1)÷3=6732,
∵x2+x3+x4=7,
∴=8+673×7+4+2=4725.
故选:D.
【点睛】
本题考查数字的变化规律,能够通过所给的数,通过计算找到数的循环规律是解题的关键.
4、A
【分析】
作正多边形的外接圆,连接 AO,BO,根据圆周角定理得到∠AOB=36°,根据中心角的定义即可求解.
【详解】
解:如图,作正多边形的外接圆,连接AO,BO,
∴∠AOB=2∠ADB=36°,
∴这个正多边形的边数为=10.
故选:A.
【点睛】
此题主要考查正多边形的性质,解题的关键是熟知圆周角定理.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
5、A
【分析】
根据平行线的判定定理逐个排查即可.
【详解】
解:①由于∠1和∠3是同位角,则①可判定;
②由于∠2和∠3是内错角,则②可判定;
③①由于∠1和∠4既不是同位角、也不是内错角,则③不能判定;
④①由于∠2和∠5是同旁内角,则④可判定;
即①②④可判定.
故选A.
【点睛】
本题主要考查了平行线的判定定理,平行线的判定定理主要有:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果内错角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.
6、D
【分析】
根据题意可得每“生长”一次,面积和增加1,据此即可求得“生长”了2021次后形成的图形中所有的正方形的面积和.
【详解】
解:如图,
由题意得:SA=1,
由勾股定理得:SB+SC=1,
则 “生长”了1次后形成的图形中所有的正方形的面积和为2,
同理可得:
“生长”了2次后形成的图形中所有的正方形面积和为3,
“生长”了3次后形成的图形中所有正方形的面积和为4,
……
“生长”了2021次后形成的图形中所有的正方形的面积和是2022,
故选:D
【点睛】
本题考查了勾股数规律问题,找到规律是解题的关键.
7、D
【分析】
普查和抽样调查的选择,需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.
【详解】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解:A、了解某品牌电视的使用寿命,调查带有破坏性,应用抽样调查方式,故此选项不合题意;
B、了解一批西瓜是否甜,调查带有破坏性,应用抽样调查方式,故此选项不合题意;
C、了解某批次烟花爆竹的燃放效果,调查带有破坏性,适合选择抽样调查,故此选项不符合题意;
D、了解某隔离小区居民新冠核酸检查结果,对结果的要求高,结果必须准确,应用全面调查方式,故此选项符合题意.
故选:D.
【点睛】
本题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
8、D
【分析】
根据同类项是字母相同,相同字母的指数也相同的两个单项式进行解答即可.
【详解】
解:A、ab与ab2不是同类项,不符合题意;
B、a2b与ab2不是同类项,不符合题意;
C、ab2c与ab2不是同类项,不符合题意;
D、-2ab2与ab2是同类项,符合题意;
故选:D.
【点睛】
本题考查同类项,理解同类项的概念是解答的关键.
9、A
【分析】
由折叠的性质得,,故,,推出,由,推出,根据AAS证明,即可得,,设,则,由勾股定理即可求出、,由计算即可得出答案.
【详解】
由折叠的性质得,,
∴,,
∴,
∵,
∴,
∴,
在与中,
,
∴,
∴,,
设,则,
∴,
解得:,
∴,,
∴.
故选:A.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题考查折叠的性质以及全等三角形的判定与性质,掌握全等三角形的判定定理和性质是解题的关键.
10、D
【分析】
两人同行过程中的速度就是20分钟前进3600千米的速度,即可判断A;东东在爸爸返回5分钟后返回即第20分钟返回,即可得到m=15,由此即可计算出n的值和爸爸返回的速度,即可判断B、C;分别求出运动18分钟和运动31分钟两人与家的距离即可得到答案.
【详解】
解:∵3600÷20=180米/分,
∴两人同行过程中的速度为180米/分,故A选项不符合题意;
∵东东在爸爸返回5分钟后返回即第20分钟返回
∴m=20-5=15,
∴n=180×15=2700,故B选项不符合题意;
∴爸爸返回的速度=2700÷(45-15)=90米/分,故C选项不符合题意;
∵当运动18分钟时,爸爸离家的距离=2700-90×(18-15)=2430米,东东离家的距离=180×18=3240米,
∴运动18分钟时两人相距3240-2430=810米;
∵返程过程中东东45-20=25分钟走了3600米,
∴东东返程速度=3600÷25=144米/分,
∴运动31分钟时东东离家的距离=3600-144×(31-20)=2016米,爸爸离家的距离=2700-90×(31-15)=1260米,
∴运动31分钟两人相距756米,故D选项符合题意;
故选D.
【点睛】
本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.
二、填空题
1、64
【解析】
【分析】
根据相似多边形周长之比等于相似比,面积之比等于相似比的平方求出面积比,计算即可.
【详解】
解:∵两个相似多边形的周长比是3:4,
∴两个相似多边形的相似比是3:4,
∴两个相似多边形的面积比是9:16,
∵较小多边形的面积为36cm2,
∴较大多边形的面积为64cm2,
故答案为:64.
【点睛】
本题考查了相似多边形的性质.相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方.
2、1
【解析】
【分析】
先观察,再由已知求出6a-3b=9,然后整体代入求解即可.
【详解】
解:∵2a-b=3,
∴6a-3b=9,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴6a-(3b+8)=(6a-3b)-8=9-8=1,
故答案为:1.
【点睛】
本题考查代数式求值、整式的加减,利用整体代入求解是解答的关键.
3、
【解析】
【分析】
画出树状图分析,找出可能出现的情况,再计算即可.
【详解】
解:画树形图如下:
从树形图可以看出,所有可能出现的结果共有9种,两人手势不相同有6种,
所以两人手势不相同的概率=,
故答案为:.
【点睛】
本题涉及列表法和树状图法以及相关概率知识,用到的知识点为:概率=所求情况数与总情况数之比.
4、或
【解析】
【分析】
根据勾股定理求出PE=3,设OH=x,可知,DH=(x-3)或(3- x),勾股定理列出方程,求出x值即可.
【详解】
解:如图所示,过点作直线的垂线,交m、n于点D、E,连接,
由作图可知,,,点到直线的距离为4个单位,即,
,
则,,
设OH=x,可知,DH=(3- x),
解得,,
;
如图所示,过点作直线的垂线,交m、n于点D、E,连接,
由作图可知,,,点到直线的距离为4个单位,即,
,
则,,
设OH=x,可知,DH=(x-3),
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解得,,
;
故答案为:或
【点睛】
本题考查了勾股定理和轴对称,解题关键是画出正确图形,会分类讨论,设未知数,根据勾股定理列方程.
5、 4 或5或4
【解析】
【分析】
(1)根据矩形的性质得到CD=cm,,求出DQ=(8-t)cm,由四边形APQD是矩形时,得到t=8-t,求出t值;
(2)连接PC,求出AP=PC=tcm,PB=(8-t)cm,由勾股定理得,即,求解即可;
(3)由勾股定理求出AC=10cm,证明△OAP≌△OCQ,得到OA=OC=5cm,分三种情况:当AP=OP时,过点P作PN⊥AO于N,证明△NAP∽△BAC,得到,求出t=;当AP=AO=5cm时,t=5;当OP=AO=5cm时,过点O作OG⊥AB于G,证明△OAG∽△CAB,得到,代入数值求出t.
【详解】
解:(1)由题意得AP=CQ=t,
∵在矩形ABCD中,cm,cm.
∴CD=cm,,
∴DQ=(8-t)cm,
当四边形APQD是矩形时,AP=DQ,
∴t=8-t,
解得t=4,
故答案为:4;
(2)连接PC,
∵四边形APCQ是菱形,
∴AP=PC=tcm,PB=(8-t)cm,
∵在矩形ABCD中,∠B=90°,
∴,
∴,
解得,
故答案为:;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(3)∵∠B=90°,cm,cm.
∴AC=10cm,
∵,
∴∠OAP=∠OCQ,∠OPA=∠OQC,
∴△OAP≌△OCQ,
∴OA=OC=5cm,
分三种情况:
当AP=OP时,过点P作PN⊥AO于N,则AN=ON=2.5cm,
∵∠NAP=∠BAC,∠ANP=∠B,
∴△NAP∽△BAC,
∴,
∴,
解得t=;
当AP=AO=5cm时,t=5;
当OP=AO=5cm时,过点O作OG⊥AB于G,则,
∵∠OAG=∠BAC,∠OGA=∠B,
∴△OAG∽△CAB,
∴,
∴,
解得t=4,
故答案为:或5或4.
【点睛】
此题考查了矩形的性质,菱形的性质,等腰三角形的性质,勾股定理,相似三角形的判定及性质,熟记各知识点并应用解决问题是解题的关键.
三、解答题
1、,同旁内角互补,两直线平行,,两直线平行,内错角相等,,同位角相等,两直线平行
【分析】
先由,证明,可得,结合已知条件证明,再证明即可.
【详解】
解:证明:∵(已知)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴(同旁内角互补,两直线平行)
∴.(两直线平行,内错角相等)
∵(已知)
∴(等量代换)
∴(同位角相等,两直线平行)
【点睛】
本题考查的是平行线的判定与性质,掌握“平行线的判定方法”是解本题的关键.
2、数轴见解析,-|-3|<-2<+(-1)<0<1<-(-4)
【分析】
先根据相反数,绝对值进行计算,再在数轴上表示出各个数,再比较大小即可.
【详解】
解:-(-4)=4,+(-1)=-1,-|-3|=-3,
-|-3|<-2<+(-1)<0<1<-(-4).
【点睛】
本题考查了数轴,有理数的大小比较,绝对值和相反数等知识点,能正确在数轴上表示出各个数是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.
3、
【分析】
根据的负的平方根是,的立方根是3,可以求得、的值,从而可以求得所求式子的四次方根.
【详解】
解:的负的平方根是,的立方根是3,
,
解得,,
,
的四次方根是,
即的四次方根是.
【点睛】
本题考查平方根、立方根,以及二元一次方程组的解法,解答本题的关键是明确题意,求出、的值.
4、
(1)100名
(2)①见解析;②
(3)1440名
【分析】
(1)用不及格的人数除以不及格的人数占比即可得到总人数;
(2)①根据(1)算出的总人数先求出良好的人数,然后求出优秀的人数即可补全统计图;②先求出及格人数的占比,然后用360°乘以及格人数的占比即可得到答案;
(3)先求出样本中,优秀和良好的人数占比,然后估计总体中优秀和良好的人数即可.
(1)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解:由题意得抽取的学生人数为:(名);
(2)
解:①由题意得:良好的人数为:(名),
∴优秀的人数为:(名),
∴补全统计图如下所示:
②由题意得:扇形统计图中表示“及格”的扇形的圆心角度数=;
(3)
解:由题意得:估计这次竞赛成绩为“优秀”和“良好”等级的学生共有(名).
【点睛】
本题主要考查了条形统计图与扇形统计图信息相关联,画条形统计图,求扇形统计图某一项的圆心角度数,用样本估计总体等等,正确读懂统计图是解题的关键.
5、(1)①图见解析;②图见解析;(2)线段垂直平分线上的点到这条线段两个端点的距离相等,等边对等角,110,80,40.
【分析】
(1)①根据线段垂直平分线的尺规作图即可得;
②先连接,再根据角平分线的尺规作图即可得;
(2)先根据线段垂直平分线的性质可得,再根据等腰三角形的性质可得,然后根据三角形的内角和定理可得,从而可得,最后根据角平分线的定义即可得.
【详解】
解:(1)①作边的垂直平分线交于点,交于点如图所示:
②连接,作的平分线交于点如图所示:
(2)∵垂直平分线段,
∴,(线段垂直平分线上的点到这条线段两个端点的距离相等)
∴,(等边对等角)
∵,
∴,
∵,
∴,
∴,
∵平分,
∴.
【点睛】
本题考查了线段垂直平分线和角平分线的尺规作图、线段垂直平分线的性质、等腰三角形的性质等知识点,熟练掌握尺规作图和线段垂直平分线的性质是解题关键.
相关试卷
这是一份【真题汇总卷】湖南省怀化市中考数学历年高频真题专项攻克 B卷(含答案及详解),共27页。试卷主要包含了下列图标中,轴对称图形的是,如图,,下列图形是全等图形的是,下列方程中,解为的方程是,单项式的次数是等内容,欢迎下载使用。
这是一份【真题汇总卷】湖南省衡阳市中考数学历年高频真题专项攻克 B卷(含答案详解),共28页。试卷主要包含了下列方程变形不正确的是等内容,欢迎下载使用。
这是一份【真题汇总卷】贵州省中考数学历年高频真题专项攻克 B卷(含详解),共30页。试卷主要包含了代数式的意义是,下列现象等内容,欢迎下载使用。