年终活动
搜索
    上传资料 赚现金

    专题13 动点在等腰三角形中的分类讨论(基础训练)-中考数学重难点专项突破(全国通用)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题13 动点在等腰三角形中的分类讨论(基础训练)(原卷版).docx
    • 解析
      专题13 动点在等腰三角形中的分类讨论(基础训练)(解析版).docx
    专题13 动点在等腰三角形中的分类讨论(基础训练)(原卷版)第1页
    专题13 动点在等腰三角形中的分类讨论(基础训练)(解析版)第1页
    专题13 动点在等腰三角形中的分类讨论(基础训练)(解析版)第2页
    专题13 动点在等腰三角形中的分类讨论(基础训练)(解析版)第3页
    还剩2页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题13 动点在等腰三角形中的分类讨论(基础训练)-中考数学重难点专项突破(全国通用)

    展开

    这是一份专题13 动点在等腰三角形中的分类讨论(基础训练)-中考数学重难点专项突破(全国通用),文件包含专题13动点在等腰三角形中的分类讨论基础训练原卷版docx、专题13动点在等腰三角形中的分类讨论基础训练解析版docx等2份试卷配套教学资源,其中试卷共11页, 欢迎下载使用。
    点的存在性问题,在中考压轴题中非常普遍。比如因动点产生的平行四边形问题、因动点产生的线段和差问题、因动点产生的全等三角形问题、因动点产生的等腰三角形。这些动点产生的几何图形问题可谓十分的普遍,难度系数究竟怎么样?又有什么规律可遵循?下面,从动点产生的等腰三角形出发,分析探究这一点的存在性问题。
    既然是探究因动点产生的等腰三角形,那么等腰三角形的基础知识必须总结归纳,牢记于心。
    等腰三角形的性质:(1)等边对等角;(2)三线合一。
    等腰三角形的判定:等角对等边。
    而等腰三角形还有一点要特别注意:不确定性!①边的不确定性;②角的不确定性。
    当给出等腰三角形的一条边时,我们要确定这条边到底是腰还是底边,同时还要确保三角形的两边之和大于第三边,三角形的两边之差小于第三边。如果边不确定,那么一定要分类讨论!
    当给出等腰三角形的一个角时,也要确定这个角是底角还是顶角。如果题中没有明显说明,那么一定要分类讨论!
    因此,分类讨论思想是动点产生的等腰三角形问题中非常重要的思想方法!
    【精典例题】
    1、如图,已知中,厘米,厘米,点为的中点.
    (1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
    ①若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由;
    ②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使与全等?
    (2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?
    A
    Q
    C
    D
    B
    P
    2、已知:等边三角形的边长为4厘米,长为1厘米的线段在的边上沿方向以1厘米/秒的速度向点运动(运动开始时,点与点重合,点到达点时运动终止),过点分别作边的垂线,与的其它边交于两点,线段运动的时间为秒.
    (1)线段在运动的过程中,为何值时,四边形恰为矩形?并求出该矩形的面积;
    (2)线段在运动的过程中,四边形的面积为,运动的时间为.求四边形的面积随运动时间变化的函数关系式,并写出自变量的取值范围.
    3、如图1,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC于点E,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90°.
    (1)求ED、EC的长;
    (2)若BP=2,求CQ的长;
    (3)记线段PQ与线段DE的交点为F,若△PDF为等腰三角形,求BP的长.
    图1 备用图[来源:Z#xx#k.Cm]
    4、如图1,在△ABC中,ACB=90°,∠BAC=60°,点E是∠BAC的平分线上一点,过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连接DB,点F是BD的中点,DH⊥AC,垂足为H,连接EF,HF.
    (1)如图1,若点H是AC的中点,AC=,求AB、BD的长;
    (2)如图1,求证:HF=EF.
    (3)如图2,连接CF、CE,猜想:△CEF是否是等边三角形?若是,请证明;若不是,请说明理由.
    图1 图2
    5、如图1,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.
    (1)求点B的坐标;
    (2)求经过A、O、B的抛物线的解析式;
    (3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.
    图1
    6、如图1,抛物线y=ax2+bx+c经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴.
    (1)求抛物线的函数关系式;
    (2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;
    (3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.
    图1

    相关试卷

    专题01 截长补短模型证明问题(基础训练)-中考数学重难点专项突破(全国通用):

    这是一份专题01 截长补短模型证明问题(基础训练)-中考数学重难点专项突破(全国通用),文件包含专题01截长补短模型证明问题基础训练原卷版docx、专题01截长补短模型证明问题基础训练解析版docx等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。

    最新中考数学难点突破与经典模型精讲练 专题27 四边形中由动点引起的分类讨论问题 (全国通用):

    这是一份最新中考数学难点突破与经典模型精讲练 专题27 四边形中由动点引起的分类讨论问题 (全国通用),文件包含专题27四边形中由动点引起的分类讨论问题原卷版docx、专题27四边形中由动点引起的分类讨论问题解析版docx等2份试卷配套教学资源,其中试卷共59页, 欢迎下载使用。

    最新中考数学难点突破与经典模型精讲练 专题24 等腰三角形中由动点引起的分类讨论问题 (全国通用):

    这是一份最新中考数学难点突破与经典模型精讲练 专题24 等腰三角形中由动点引起的分类讨论问题 (全国通用),文件包含专题24等腰三角形中由动点引起的分类讨论问题原卷版docx、专题24等腰三角形中由动点引起的分类讨论问题解析版docx等2份试卷配套教学资源,其中试卷共61页, 欢迎下载使用。

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map