所属成套资源:【中考二轮】2023年中考数学难点突破与经典模型精讲练(全国通用)
最新中考数学难点突破与经典模型精讲练 专题12 相似三角形中的旋转型相似模型 (全国通用)
展开
这是一份最新中考数学难点突破与经典模型精讲练 专题12 相似三角形中的旋转型相似模型 (全国通用),文件包含专题12相似三角形中的旋转型相似模型原卷版docx、专题12相似三角形中的旋转型相似模型解析版docx等2份试卷配套教学资源,其中试卷共65页, 欢迎下载使用。
1、以专题复习为主。如选择题、填空题的专项练习,要把握准确度和时间的安排。加强对二次函数与几何图形结合的综合性试题、实际应用题等专题的练习,深化对常考题型的熟悉程度。在函数复习过程中,如果考生未能完全理解简单实例中的数量关系和变化规律,针对此类问题,在专项复习中,可以通过选择题、填空题的专项练习,进行突破,如“读懂图象信息问题”等,将复杂问题由浅入深,层层分解,提高分析和判断能力。
2、重视方法思维的训练。对初中数学所涉及的函数思想、方程思想、数形结合思想、分类讨论思想、转化与化归思想、整体思想等数学思想方法,要通过典型试题的训练,进一步渗透和深刻理解其内涵,重要处舍得投入时间与精力。强化解题过程中常用的配方法、待定系数法等通法。
3、拓宽思维的广度,培养多角度、多维度思考问题的习惯。将专项复习中的共性习题串连起来,通过一题多解,积极地探求解决问题的最优解法,这样,对于解决难度较大的压轴题会有很大的帮助。
专题12 相似三角形中的旋转型相似模型
【模型展示】
【题型演练】
一、单选题
1.如图,正方形中,点是边上一点,连接,以为对角线作正方形,边与正方形的对角线相交于点,连接.以下四个结论:①;②;③;④.其中正确的个数为( )
A.个B.个C.个D.个
2.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,给出下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S△ABF:S四边形CDEF=2:5,其中正确的结论有( )
A.1个B.2个C.3个D.4个
二、填空题
3.已知正方形DEFG的顶点F在正方形ABCD的一边AD的延长线上,连结AG,CE交于点H,若,,则CH的长为________.
4.如图,正方形的边长为8,线段绕着点逆时针方向旋转,且,连接,以为边作正方形,为边的中点,当线段的长最小时,______.
5.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S四边形CDEF=S△ABF,其中正确的结论有_______(填正确的序号)
6.如图,正方形ABCD中,点F是BC边上一点,连接AF,以AF为对角线作正方形AEFG,边FG与AC相交于点H,连接DG.以下四个结论:
①∠EAB=∠BFE=∠DAG;
②△ACF∽△ADG;
③;
④DG⊥AC.
其中正确的是_____.(写出所有正确结论的序号)
7.如图,在一个的网格中,点都在格点上,,点P是线段AB上的一个动点,连接OP,将线段OA沿直线OP进行翻折,点A落在点C处,连接BC,以BC为斜边在直线BC的左侧(或下方)构造等腰直角三角形,则点P从A运动到B的过程中,线段BC的长的最小值为____________,线段BD所扫过的区域内的格点的个数为(不包含所扫过的区域边界上的点)____________.
三、解答题
8.【问题发现】如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D为斜边BC上一点(不与点B,C重合),将线段AD绕点A顺时针旋转90°得到AE,连接EC,则线段BD与CE的数量关系是______,位置关系是______;
【探究证明】如图2,在Rt△ABC和Rt△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,将△ADE绕点A旋转,当点C,D,E在同一条直线上时,BD与CE具有怎样的位置关系,说明理由;
【拓展延伸】如图3,在Rt△BCD中,∠BCD=90°,BC=2CD=4,过点C作CA⊥BD于A.将△ACD绕点A顺时针旋转,点C的对应点为点E.设旋转角∠CAE为(0°<<360°),当C,D,E在同一条直线上时,画出图形,并求出线段BE的长度.
9.如图,在正方形ABCD中,点P在对角线BD上,直线AP交CD于E,PF⊥AE交BC于点F,连接AF交BD于M.
(1)判断△APF的形状,并说明理由;
(2)连接EF,求EF:PM的值.
10.某校数学活动小组探究了如下数学问题:
(1)问题发现:如图1,中,,.点P是底边BC上一点,连接AP,以AP为腰作等腰,且,连接CQ、则BP和CQ的数量关系是______;
(2)变式探究:如图2,中,,.点P是腰AB上一点,连接CP,以CP为底边作等腰,连接AQ,判断BP和AQ的数量关系,并说明理由;
(3)问题解决:如图3,在正方形ABCD中,点P是边BC上一点,以DP为边作正方形DPEF,点Q是正方形DPEF两条对角线的交点,连接CQ.若正方形DPEF的边长为,,求正方形ABCD的边长.
11.[问题发现]
(1)如图1,在Rt△ABC中,,,点为的中点,以为一边作正方形,点与点重合,已知.请直接写出线段与的数量关系;
[实验研究]
(2)在(1)的条件下,将正方形绕点旋转至如图2所示的位置,连接,,.请猜想线段和的数量关系,并证明你的结论;
[结论运用]
(3)在(1)(2)的条件下,若的面积为8,当正方形旋转到,,三点共线时,请求出线段的长.
12.如图1,已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.
(1)证明:四边形CEGF是正方形;
(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图2所示,试探究线段AG与BE之间的数量关系,并说明理由;
(3)拓展与运用:正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图3所示,当B,E,F三点在一条直线上时,延长CG交AD于点H,若AG=9,GH=3,求BC的长.
13.如图,和是有公共顶点直角三角形,,点P为射线,的交点.
(1)如图1,若和是等腰直角三角形,求证:;
(2)如图2,若,问:(1)中的结论是否成立?请说明理由.
(3)在(1)的条件下,,,若把绕点A旋转,当时,请直接写出的长度
14.一次小组合作探究课上,老师将两个正方形按如图所示的位置摆放(点E、A、D在同一条直线上),发现且.
小组讨论后,提出了下列三个问题,请你帮助解答:
(1)将正方形绕点A按逆时针方向旋转(如图1),还能得到吗?若能,请给出证明,请说明理由;
(2)把背景中的正方形分别改成菱形和菱形,将菱形绕点A按顺时针方向旋转(如图2),试问当与的大小满足怎样的关系时,;
(3)把背景中的正方形分别改写成矩形和矩形,且,,(如图3),连接,.试求的值(用a,b表示).
15.在△ABC中,AB=AC,∠BAC=α,点P是△ABC外一点,连接BP,将线段BP绕点P逆时针旋转α得到线段PD,连接BD,CD,AP.
观察猜想:
(1)如图1,当α=60°时,的值为 ,直线CD与 AP所成的较小角的度数为 °;
类比探究:
(2)如图2,当α=90°时,求出的值及直线CD与AP所成的较小角的度数;
拓展应用:
(3)如图3,当α=90°时,点E,F分别为AB,AC的中点,点P在线段FE的延长线上,点A,D,P三点在一条直线上,BD交PF于点G,CD交AB于点H. 若CD=2+,求BD的长.
16.如图,正方形ABCD,对角线AC,BD相交于O,Q为线段DB上的一点,,点M、N分别在直线BC、DC上.
(1)如图1,当Q为线段OD的中点时,求证:;
(2)如图2,当Q为线段OB的中点,点N在CD的延长线上时,则线段DN、BM、BC的数量关系为 ;
(3)在(2)的条件下,连接MN,交AD、BD于点E、F,若,,求EF的长.
17.如图,以的两边、分别向外作等边和等边,与交于点,已知,,.
(1)求证:;
(2)求的度数及的长;
(3)若点、分别是等边和等边的重心(三边中线的交点),连接、、,作出图象,求的长.
18.在矩形中,,点为的中点,点为对角线的中点,点、分别在边、上,且.
(1)求的值.
(2)求证:.
(3)作射线与射线交于点,若,,求的长.
19.如图,四边形ABCD和四边形AEFG都是正方形,C,F,G三点在一直线上,连接AF并延长交边CD于点M.
(1)求证:△MFC∽△MCA;
(2)求证△ACF∽△ABE;
(3)若DM=1,CM=2,求正方形AEFG的边长.
20.已知,ABC中,AB=AC,∠BAC=2α°,点D为BC边中点,连接AD,点E为线段AD上一动点,把线段CE绕点E顺时针旋转2α°得到线段EF,连接FG,FD.
(1)如图1,当∠BAC=60°时,请直接写出的值;
(2)如图2,当∠BAC=90°时,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请写出正确的结论,并说明理由;
(3)如图3,当点E在AD上移动时,请直接写出点E运动到什么位置时的值最小.最小值是多少?(用含α的三角函数表示)
21.如图,四边形ABCD和四边形AEFG都是正方形,C,F,G三点在一直线上,连接AF并延长交边CD于点M.
(1)求证:△MFC∽△MCA;
(2)求的值,
(3)若DM=1,CM=2,求正方形AEFG的边长.
22.如图,在△ABC中,AB=AC,点D是BC边上的中点,点P是AC边上的一个动点,延长DP到点E,使∠CAE=∠CDE,作∠DCG=∠ACE,其中G点在DE上.
(1)如图1,若∠B=45°,则= ;
(2)如图2,若∠DCG=30°,,求:= ;
(3)如图3,若∠ABC=60°,延长CG至点M,使得MG=GC,连接AM,BM.在点P运动的过程中,探究:当的值为多少时,线段AM与DM的长度之和取得最小值?
特点
如图,若△ABC∽△ADE,则△ABD∽△ACE.[
结论
若△ABC∽△ADE,则△ABD∽△ACE.[
相关试卷
这是一份最新中考数学难点突破与经典模型精讲练 专题13 相似三角形中的母子型相似模型 (全国通用),文件包含专题13相似三角形中的母子型相似模型原卷版docx、专题13相似三角形中的母子型相似模型解析版docx等2份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。
这是一份最新中考数学难点突破与经典模型精讲练 专题09 相似三角形中的“A”字型相似模型 (全国通用),文件包含专题09相似三角形中的“A”字型相似模型原卷版docx、专题09相似三角形中的“A”字型相似模型解析版docx等2份试卷配套教学资源,其中试卷共61页, 欢迎下载使用。
这是一份最新中考数学难点突破与经典模型精讲练 专题08 全等三角形中的角平分线模型 (全国通用),文件包含专题08全等三角形中的角平分线模型原卷版docx、专题08全等三角形中的角平分线模型解析版docx等2份试卷配套教学资源,其中试卷共52页, 欢迎下载使用。