所属成套资源:中考数学一轮复习考点过关练习 (含答案)
中考数学一轮复习考点过关练习《概率初步》(含答案)
展开
这是一份中考数学一轮复习考点过关练习《概率初步》(含答案),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题
1.下列事件中,是必然事件的是( )
A.明天太阳从东方升起
B.打开电视机,正在播放体育新闻
C.射击运动员射击一次,命中靶心
D.经过有交通信号灯的路灯,遇到红灯
2.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则( )
A.事件①是必然事件,事件②是随机事件
B.事件①是随机事件,事件②是必然事件
C.事件①和②都是随机事件
D.事件①和②都是必然事件
3.在不透明的袋子装有9个白球和一个红球,它们除颜色外其余都相同,从袋中随意摸出一个球,则下列说法中正确的是( )
A.“摸出的球是白球”是必然事件
B.“摸出的球是红球”是不可能事件
C.摸出的球是白球的可能性不大
D.摸出的球有可能是红球
4.某同学午觉醒来发现钟表停了,他打开收音机想听电台整点报时,则他等待的时间不超过15分钟的概率是( )
A.eq \f(1,2) B.eq \f(1,3) C.eq \f(1,4) D.eq \f(1,5)
5.如图,一个圆形转盘被平均分成6个全等的扇形,任意旋转这个转盘1次,则当转盘停止转动时,指针指向阴影部分的概率是( )
A. B. C. D.
6.从-2,-1,2这三个数中任取两个不同的数相乘,积为正数的概率是( )
A.eq \f(2,3) B.eq \f(1,2) C.eq \f(1,3) D.eq \f(1,4)
7.小杰想用6个除颜色外均相同的球设计一个游戏,下面是他设计的4个游戏方案.不成功的是( )
A.摸到黄球的概率为eq \f(1,2) QUOTE ,红球的概率为eq \f(1,2)
B.摸到黄、红、白球的概率都为eq \f(1,3)
C.摸到黄球的概率为eq \f(1,2),红球的概率为eq \f(1,3),白球的概率为eq \f(1,6)
D.摸到黄球的概率为eq \f(2,3),摸到红球、白球的概率都是eq \f(1,3)
8.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是( )
A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃
B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
C.抛一个质地均匀的正六面体骰子,向上的面点数是5
D.抛一枚硬币,出现反面的概率
9.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线图,则符合这一结果的实验最有可能的是( )
A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
B.掷一枚质地均匀的正六面体骰子,向上一面的点数是4
C.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃
D.抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上
10.同时抛掷A、B两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字分别为x、y,并以此确定点P(x,y),那么点P落在抛物线y=-x2+3x上的概率为( )
A.eq \f(1,18) B.eq \f(1,12) C.eq \f(1,9) D.eq \f(1,6)
二、填空题
11.抛掷一枚质地均匀的硬币,落地后正面朝上的概率是 .
12.在分别写有-1,0,1,2的四张卡片中随机抽取一张,所抽取的数字平方后等于1的概率为________.
13.已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是________.
14.游戏是否公平是指双方获胜的可能性是否相同,只有当双方获胜的可能性 (等可能事件发生的概率相同)时,游戏才公平,否则游戏不公平.
15.一个不透明的口袋里装有若干除颜色外其他完全相同的小球,其中有6个黄球,将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述实验后发现,摸到黄球的频率稳定在30%,由此估计口袋中共有小球 个.
16.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为 (精确到0.1).
三、解答题
17.一个袋中装有2个红球,3个白球,和5个黄球,每个球除了顔色外都相同,从中任意摸出一个球,分别求出摸到红球,白球,黄球的概率。
18.某镇对辖区内所有的小微企业按年利润w(万元)的多少分为以下四个类型:A类(w<10),B类(10≤w<20),C类(20≤w<30),D类(w≥30),该镇政府对辖区内所有小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:
(1)该镇本次统计的小微企业总个数是 ,扇形统计图中B类所对应扇形圆心角的度数为 度,请补全条形统计图;
(2)为了进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.
19.小颖和小丽做“摸球”游戏:在一个不透明的袋子中装有编号为1﹣4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字.若两次数字之和大于5,则小颖胜,否则小丽胜,这个游戏对双方公平吗?请说明理由.
20.某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:
(1)计算并完成表格:(精确到0.01)
(2)请估计,当n很大时,频率将会接近 . (精确到0.1)
(3)假如你去转动该转盘一次,你获得铅笔的概率约是 . (精确到0.1)
(4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少(精确到1°)
21.某县为了全面了解贫困县对扶贫工作的满意度情况,进行随机抽样调查,分为四个类别:A.非常满意;B.满意;C.基本满意;D.不满意.依据调查数据绘制成图1和图2的统计图(不完整).
根据以上信息,解答下列问题:
(1)将图1补充完整;
(2)通过分析,贫困户对扶贫工作的满意度(A、B、C类视为满意)是 ;
(3)市扶贫办从该旗县甲乡镇3户、乙乡镇2户共5户贫困户中,随机抽取两户进行满意度回访,求这两户贫困户恰好都是同一乡镇的概率.
答案
1.A.
2.C.
3.D.
4.C.
5.D.
6.C
7.D
8.B.
9.B.
10.A
11.答案为:eq \f(1,2).
12.答案为:eq \f(1,2)
13.答案为:eq \f(1,2)
14.答案为:相同
15.答案为:20.
16.答案为:0.5.
17.解:摸到红球的概率为eq \f(1,5),摸到白球的概率为eq \f(3,10).
摸到白球的概率为eq \f(1,2).
18.解:(1)该镇本次统计的小微企业总个数为4÷16%=25(个);
扇形统计图中B类所对应扇形圆心角的度数=×360°=72°
A类小微企业个数为25﹣5﹣14﹣=2(个),
补全条形统计图为:
故答案为25个,72;
(2)2个来自高新区的企业用A、B表示,2个来自开发区的企业用a、b表示,
画树状图为:
共有12种等可能的结果数,其中所抽取的2个发言代表都来自高新区的结果数为2,
所以所抽取的2个发言代表都来自高新区的概率=eq \f(1,6).
19.解:这个游戏对双方不公平.
理由:列表如下:
所有等可能的情况有16种,其中数字之和大于5的情况有
(2,4),(3,3),(3,4),(4,2),(4,3),(4,4)共6种,
故小颖获胜的概率为:eq \f(3,8),则小丽获胜的概率为:eq \f(5,8),
∵eq \f(3,8)<eq \f(5,8),
∴这个游戏对双方不公平.
20.解:(1)
(2)当n很大时,频率将会接近(79+121+162+392+653+794)÷=0.8,
故答案为:0.8;
(3)获得铅笔的概率约是0.8,
故答案为:0.8;
(4)扇形的圆心角约是0.8×360°=288度.
21.解:(1)∵被调查的总户数为60÷60%=100,
∴C类别户数为100﹣(60+20+5)=15,补全图形如下:
(2)贫困户对扶贫工作的满意度(A、B、C类视为满意)是×100%=95%,
故答案为:95%;
(3)画树状图如下:
由树状图知共有20种等可能结果,其中这两户贫困户恰好都是同一乡镇的有8种结果,
所以这两户贫困户恰好都是同一乡镇的概率为eq \f(2,5).
实验次数
100
200
300
500
800
1000
2000
频率
0.365
0.328
0.330
0.334
0.336
0.332
0.333
投篮次数(n)
50
100
150
200
250
300
500
投中次数(m)
28
60
78
104
123
152
251
投中频率(m/n)
0.56
0.60
0.52
0.52
0.49
0.51
0.50
转动转盘的次数n
100
150
200
500
800
1000
落在“铅笔”的次数m
79
121
162
392
653
794
落在“铅笔”的频率
0.78
0.82
0.79
1
2
3
4
1
(1,1)
(2,1)
(3,1)
(4,1)
2
(1,2)
(2,2)
(3,2)
(4,2)
3
(1,3)
(2,3)
(3,3)
(4,3)
4
(1,4)
(2,4)
(3,4)
(4,4)
转动转盘的次数n
100
150
200
500
800
1000
落在“铅笔”的次数m
79
121
162
392
653
794
落在“铅笔”的频率
0.8
0.8
0.8
0.78
0.82
0.79
相关试卷
这是一份中考数学一轮复习考点过关练习《实数》(含答案),共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份中考数学一轮复习考点过关练习《菱形》(含答案),共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份中考数学一轮复习考点过关练习考点27 概率 (含答案),共30页。试卷主要包含了事件的分类,概率的计算,利用频率估计概率,概率的应用等内容,欢迎下载使用。