所属成套资源:【全攻略】备战2024年高考物理一轮重难点复习
备战2024年高考物理一轮重难点复习讲义 第05章+ 万有引力与宇宙航行【全攻略】
展开
这是一份备战2024年高考物理一轮重难点复习讲义 第05章+ 万有引力与宇宙航行【全攻略】,文件包含第五章万有引力与宇宙航行原卷版docx、第五章万有引力与宇宙航行解析版docx等2份学案配套教学资源,其中学案共46页, 欢迎下载使用。
2、知道引力常数的数值、单位及其测量装置;
3、掌握万有引力定律并能应用;
4、理解三种宇宙速度及其区别。
一、开普勒定律
二、开普勒定律的理解
1.行星绕太阳运动的轨道通常按圆轨道处理.
2.由开普勒第二定律可得eq \f(1,2)Δl1r1=eq \f(1,2)Δl2r2,eq \f(1,2)v1·Δt·r1=eq \f(1,2)v2·Δt·r2,解得eq \f(v1,v2)=eq \f(r2,r1),即行星在两个位置的速度之比与到太阳的距离成反比,近日点速度最大,远日点速度最小.
3.开普勒第三定律eq \f(a3,T2)=k中,k值只与中心天体的质量有关,不同的中心天体k值不同,且该定律只能用在同一中心天体的两星体之间.
三、万有引力定律
1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1和m2的乘积成正比,与它们之间距离r的二次方成反比。
2.表达式:F=Geq \f(m1m2,r2),G是比例系数,叫作引力常量,G=6.67×10-11 N·m2/kg2。
3.适用条件
(1)公式适用于质点间的相互作用,当两个物体间的距离远大于物体本身的大小时,物体可视为质点。
(2)质量分布均匀的球体可视为质点,r是两球心间的距离。
四、万有引力定律的理解及应用
1.地球表面的重力与万有引力
地面上的物体所受地球的吸引力产生两个效果,其中一个分力提供了物体绕地轴做圆周运动的向心力,另一个分力等于重力。
(1)在两极,向心力等于零,重力等于万有引力;
(2)除两极外,物体的重力都比万有引力小;
(3)在赤道处,物体的万有引力分解为两个分力,F向和mg,这两个分力刚好在一条直线上,则有F=F向+mg,所以mg=F-F向=eq \f(GMm,R2)-mRωeq \\al( 2,自)。
2.地球表面上的重力加速度
(1)设在地球表面附近的重力加速度为g(不考虑地球自转),由mg=Geq \f(Mm,R2),得g=Geq \f(M,R2)。
(2)设在地球上空距离地心r=R+h处的重力加速度为g′,由mg′=eq \f(GMm,(R+h)2),得g′=eq \f(GM,(R+h)2),所以eq \f(g,g′)=eq \f((R+h)2,R2)。
3.万有引力的“两点理解”和“两个推论”
(1)两点理解
①两物体相互作用的万有引力是一对作用力和反作用力.
②地球上的物体(两极除外)受到的重力只是万有引力的一个分力.
(2)星体内部万有引力的两个推论
①推论1:在匀质球壳的空腔内任意位置处,质点受到球壳的万有引力的合力为零,即∑F引=0.
②推论2:在匀质球体内部距离球心r处的质点(m)受到的万有引力等于球体内半径为r的同心球体(M′)对它的万有引力,即F=Geq \f(M′m,r2).
五、天体质量和密度的计算
1.利用天体表面重力加速度
已知天体表面的重力加速度g和天体半径R.
①由Geq \f(Mm,R2)=mg,得天体质量M=eq \f(gR2,G).
②天体密度ρ=eq \f(M,V)=eq \f(M,\f(4,3)πR3)=eq \f(3g,4πGR).
2.利用运行天体(以已知周期为例)
测出卫星绕中心天体做匀速圆周运动的半径r和周期T.
①由Geq \f(Mm,r2)=meq \f(4π2,T2)r,得M=eq \f(4π2r3,GT2).
②若已知天体的半径R,则天体的密度ρ=eq \f(M,V)=eq \f(M,\f(4,3)πR3)=eq \f(3πr3,GT2R3).
③若卫星绕天体表面运行,可认为轨道半径r等于天体半径R,则天体密度ρ=eq \f(3π,GT2),故只要测出卫星环绕天体表面运动的周期T,就可估算出中心天体的密度.
六、人造卫星与宇宙航行
1.天体(卫星)运行问题分析
将天体或卫星的运动看成匀速圆周运动,其所需向心力由万有引力提供.
2.物理量随轨道半径变化的规律
Geq \f(Mm,r2)=eq \b\lc\{\rc\ (\a\vs4\al\c1(ma→a=\f(GM,r2)→a∝\f(1,r2),m\f(v2,r)→v=\r(\f(GM,r))→v∝\f(1,\r(r)),mω2r→ω=\r(\f(GM,r3))→ω∝\f(1,\r(r3)),m\f(4π2,T2)r→T=\r(\f(4π2r3,GM))→T∝\r(r3)))
即r越大,v、ω、a越小,T越大.(越高越慢)
3.人造卫星
卫星运行的轨道平面一定通过地心,一般分为赤道轨道、极地轨道和其他轨道,同步卫星的轨道是赤道轨道.
(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖.
(2)同步卫星
①轨道平面与赤道平面共面,且与地球自转的方向相同.
②周期与地球自转周期相等,T=24 h.
③高度固定不变,h=3.6×107 m.
④运行速率均为v=3.1 km/s.
(3)近地卫星:轨道在地球表面附近的卫星,其轨道半径r=R(地球半径),运行速度等于第一宇宙速度v=7.9 km/s(人造地球卫星的最大圆轨道运行速度),T=85 min(人造地球卫星的最小周期).
注意:近地卫星可能为极地卫星,也可能为赤道卫星.
4.宇宙速度
(1)第一宇宙速度
①第一宇宙速度又叫环绕速度,其数值为7.9 km/s。
②第一宇宙速度是物体在地球附近绕地球做匀速圆周运动时的速度。
③第一宇宙速度是人造卫星的最小发射速度,也是人造卫星的最大环绕速度。
④第一宇宙速度的计算方法
由Geq \f(Mm,R2)=meq \f(v2,R)得v=eq \r(\f(GM,R));
由mg=meq \f(v2,R)得v=eq \r(gR).
(2)第二宇宙速度:使物体挣脱地球引力束缚的最小发射速度,其数值为11.2 km/s.
(3)第三宇宙速度:使物体挣脱太阳引力束缚的最小发射速度,其数值为16.7 km/s.
5.第一宇宙速度的推导
方法一:由Geq \f(Mm,R2)=meq \f(v12,R),得v1=eq \r(\f(GM,R))=eq \r(\f(6.67×10-11×5.98×1024,6.4×106)) m/s≈7.9×103 m/s.
方法二:由mg=meq \f(v12,R)得
v1=eq \r(gR)=eq \r(9.8×6.4×106) m/s≈7.9×103 m/s.
第一宇宙速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速度,此时它的运行周期最短,Tmin=2πeq \r(\f(R,g))=2πeq \r(\f(6.4×106,9.8)) s≈5 075 s≈85 min.
6.宇宙速度与运动轨迹的关系
(1)v发=7.9 km/s时,卫星绕地球表面做匀速圆周运动.
(2)7.9 km/svB,又因v1>v3,故有vA>v1>v3>vB.
(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A点,卫星的加速度都相同,同理,卫星在轨道Ⅱ或轨道Ⅲ上经过B点的加速度也相同.
(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上的运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律eq \f(r3,T2)=k可知T1
相关学案
这是一份备战2024年高考物理一轮重难点复习讲义 第16章+ 热学【全攻略】,文件包含第十六章热学原卷版docx、第十六章热学解析版docx等2份学案配套教学资源,其中学案共49页, 欢迎下载使用。
这是一份备战2024年高考物理一轮重难点复习讲义 第14章+ 光【全攻略】,文件包含第十四章光原卷版docx、第十四章光解析版docx等2份学案配套教学资源,其中学案共39页, 欢迎下载使用。
这是一份备战2024年高考物理一轮重难点复习讲义 第13章+ 近代物理【全攻略】,文件包含第十三章近代物理原卷版docx、第十三章近代物理解析版docx等2份学案配套教学资源,其中学案共37页, 欢迎下载使用。