重庆市渝北区2023-2024学年九上数学期末达标检测试题含答案
展开
这是一份重庆市渝北区2023-2024学年九上数学期末达标检测试题含答案,共8页。试卷主要包含了下列各组图形中,一定相似的是,一元二次方程配方后化为等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)
1.如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若∠D=40°,则∠A的度数为( )
A.20°B.25°C.30°D.40°
2.下列各说法中:①圆的每一条直径都是它的对称轴;②长度相等的两条弧是等弧;③相等的弦所对的弧也相等;④同弧所对的圆周角相等;⑤ 90°的圆周角所对的弦是直径;⑥任何一个三角形都有唯一的外接圆;其中正确的有( )
A.3 个B.4 个C.5 个D.6 个
3.一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I(A)与电阻R(Ω)之间的函数关系如图所示,如果以此蓄电池为电源的用电器限制电流不得超过10A,那么此用电器的可变电阻应( )
A.不小于4.8ΩB.不大于4.8ΩC.不小于14ΩD.不大于14Ω
4.如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1﹣k2=( ).
A.-2B.2C.-4D.4
5.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为( )
A.五丈B.四丈五尺C.一丈D.五尺
6.在Rt△ABC中,csA= ,那么sinA的值是( )
A.B.C.D.
7.下列各组图形中,一定相似的是( )
A.任意两个圆
B.任意两个等腰三角形
C.任意两个菱形
D.任意两个矩形
8.已知线段a、b、c、d满足ab=cd,把它改写成比例式,正确的是( )
A.a:d=c:bB.a:b=c:dC.c:a=d:bD.b:c=a:d
9.一元二次方程配方后化为( )
A.B.C.D.
10.若与相似且对应中线之比为,则周长之比和面积比分别是( )
A.,B.,C.,D.,
11.如图平行四边变形ABCD中,E是BC上一点,BE∶EC=2∶3,AE交BD于F,则S△BFE∶S△FDA等于( )
A.2∶5B.4∶9C.4∶25D.2∶3
12.某商品原价为180元,连续两次提价后售价为300元,设这两次提价的年平均增长率为x,那么下面列出的方程正确的是( )
A.180(1+x)=300B.180(1+x)2=300
C.180(1﹣x)=300D.180(1﹣x)2=300
二、填空题(每题4分,共24分)
13.一元二次方程的解是 .
14.如图,直线l经过⊙O的圆心O,与⊙O交于A、B两点,点C在⊙O上,∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点Q,且PQ=OQ,则满足条件的∠OCP的大小为_______.
15.若反比例函数的图象经过点(2,﹣2),(m,1),则m=_____.
16.如果两个相似三角形的面积的比是4:9,那么它们对应的角平分线的比是_____.
17.若,且一元二次方程有实数根,则的取值范围
是 .
18.点A(1,-2)关于原点对称的点A1的坐标为________.
三、解答题(共78分)
19.(8分)已知抛物线与轴交于,两点,与轴交于点.
(1)填空: , .
(2)如图1,已知,过点的直线与抛物线交于点、,且点、关于点对称,求直线的解析式.
(3)如图2,已知,是第一象限内抛物线上一点,作轴于点,若与相似,请求出点的横坐标.
20.(8分)如图,在中,,为边上的中线,于点E.
(1)求证:;
(2)若,,求线段的长.
21.(8分)如图1,在中,是的直径,交于点,过点的直线交于点,交的延长线于点.
(1)求证:是的切线;
(2)若,试求的长;
(3)如图2,点是弧的中点,连结,交于点,若,求的值.
22.(10分)如图,在ABCD中,点E在BC边上,点F在DC的延长线上,且∠DAE=∠F.
(1) 求证:△ABE∽△ECF;
(2) 若AB=5,AD=8,BE=2,求FC的长.
23.(10分)如图,在平面直角坐标系中,⊙C与y轴相切,且C点坐标为(1,0),直线过点A(—1,0),与⊙C相切于点D,求直线的解析式.
24.(10分)如图,平面直角坐标系xOy中点A的坐标为(﹣1,1),点B的坐标为(3,3),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点E.
(1)求点E的坐标;
(2)求抛物线的函数解析式;
(3)点F为线段OB上的一个动点(不与点O、B重合),直线EF与抛物线交于M、N两点(点N在y轴右侧),连接ON、BN,当四边形ABNO的面积最大时,求点N的坐标并求出四边形ABNO面积的最大值.
25.(12分)如图,在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点,连接.
(1)求抛物线的解析式;
(2)点在抛物线的对称轴上,当的周长最小时,点的坐标为_____________;
(3)点是第四象限内抛物线上的动点,连接和.求面积的最大值及此时点的坐标;
(4)若点是对称轴上的动点,在抛物线上是否存在点,使以点、、、为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.
26.(12分)如图,双曲线()与直线交于点和,连接和.
(1)求双曲线和直线的函数关系式.
(2)观察图像直接写出:当时,的取值范围.
(3)求的面积.
参考答案
一、选择题(每题4分,共48分)
1、B
2、A
3、A
4、D
5、B
6、B
7、A
8、A
9、A
10、B
11、C
12、B
二、填空题(每题4分,共24分)
13、±1.
14、40°
15、-1
16、2:1
17、且.
18、(-1,2)
三、解答题(共78分)
19、(1),;(2)直线;(3)点的横坐标为或
20、(1)见解析;(2).
21、(1)证明见解析(2)(3)
22、 (1)详见解析;(2)
23、或.
24、(1)E点坐标为(0, );(2) ;(3)四边形ABNO面积的最大值为,此时N点坐标为(, ).
25、(1);(2);(3)面积最大为,点坐标为;(4)存在点,使以点、、、为顶点的四边形是平行四边形,,点坐标为,,.
26、(1),;(2)或;(3)
相关试卷
这是一份重庆市渝北区2023-2024学年九年级上学期期末数学试题(含答案),共28页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份重庆市涪陵区涪陵第十九中学2023-2024学年九上数学期末达标检测试题含答案,共8页。试卷主要包含了抛物线与坐标轴的交点个数是等内容,欢迎下载使用。
这是一份重庆市渝北区实验中学2023-2024学年数学九上期末复习检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列说法正确的是,下列事件中,是必然事件的是等内容,欢迎下载使用。