浙江省湖州市德清县2023-2024学年数学九上期末质量检测试题含答案
展开
这是一份浙江省湖州市德清县2023-2024学年数学九上期末质量检测试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)
1.一元二次方程的根的情况为( )
A.有两个相等的实数根B.有两个不相等的实数根
C.没有实数根D.只有一个实数根
2.抛物线与坐标轴的交点个数为( )
A.个B.个或个C.个D.不确定
3.下列四组、、的线段中,不能组成直角三角形的是( )
A.,,B.,,
C.,,D.,,
4.二次函数的图像如图所示,它的对称轴为直线,与轴交点的横坐标分别为,,且.下列结论中:①;②;③;④方程有两个相等的实数根;⑤.其中正确的有( )
A.②③⑤B.②③C.②④D.①④⑤
5.下列有关圆的一些结论①任意三点可以确定一个圆;②相等的圆心角所对的弧相等;③平分弦的直径垂直于弦,并且平分弦所对的弧;④圆内接四边形对角互补.其中正确的结论是( )
A.①B.②C.③D.④
6.顺次连接边长为的正六边形的不相邻的三边的中点,又形成一个新的正三角形,则这个新的正三角形的面积等于( )
A.B.C.D.
7.如图,在⊙O中,是直径,是弦,于,连接,∠,则下列说法正确的个数是( )
①;②;③;④
A.1B.2C.3D.4
8.已知在中,,,那么下列说法中正确的是( )
A.B.C.D.
9.如图,在平面直角坐标系中,点O为坐标原点,平行四边形OABC的顶点A在反比例函数上,顶点B在反比例函数上,点C在x轴的正半轴上,则平行四边形OABC的面积是( )
A.B.C.4D.6
10.已知四边形ABCD是平行四边形,下列结论中正确的有( )
①当AB=BC时,四边形ABCD是菱形;
②当AC⊥BD时,四边形ABCD是菱形;
③当∠ABC=90°时,四边形ABCD是菱形:
④当AC=BD时,四边形ABCD是菱形;
A.3个B.4个C.1个D.2个
11.如图,平面直角坐标系中,⊙P经过三点A(8,0),O(0,0),B(0,6),点D是⊙P上的一动点.当点D到弦OB的距离最大时,tan∠BOD的值是( )
A.2B.3C.4D.5
12.在一个不透明的盒子中装有个白球,若于个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.二次函数的图象与轴交于两点(点在点的左侧),与轴交于点,作直线,将直线下方的二次函数图象沿直线向上翻折,与其它剩余部分组成一个组合图象,若线段与组合图象有两个交点,则的取值范围为_____.
14.已知一组数据:12,10,1,15,6,1.则这组数据的中位数是__.
15.如图,将一个装有水的杯子倾斜放置在水平的桌面上,其截面可看作一个宽BC=6厘米,长CD=16厘米的矩形.当水面触到杯口边缘时,边CD恰有一半露出水面,那么此时水面高度是______厘米.
16.若代数式有意义,则的取值范围是____________.
17.如图,点P在函数y=的图象上,PA⊥x轴于点A,PB⊥y轴于点B,且△APB的面积为4,则k等于_____.
18.在一个不透明的袋子中有5个除颜色外完全相同的小球,其中绿球个,红球个,摸出一个球不放回,混合均匀后再摸出一个球,两次都摸到红球的概率是________.
三、解答题(共78分)
19.(8分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌
粽子,每盒进价是40元,超市规定每盒售价不得少于45元.根据以往销售经验发现:当售价定为每盒45元时,每天可卖出700盒,每盒售价每提高1元,每天要少卖出20盒.
(1)试求出每天的销售量y(盒)与每盒售价(元)之间的函数关系式;
(2)当每盒售价定为多少元时,每天销售的利润(元)最大?最大利润是多少?
20.(8分)如图,⊙O过▱ABCD的三顶点A、D、C,边AB与⊙O相切于点A,边BC与⊙O相交于点H,射线AD交边CD于点E,交⊙O于点F,点P在射线AO上,且∠PCD=2∠DAF.
(1)求证:△ABH是等腰三角形;
(2)求证:直线PC是⊙O的切线;
(3)若AB=2,AD=,求⊙O的半径.
21.(8分) “道路千万条,安全第一条”,《中华人民共和国道路交通管理条例》规定:“小汽车在城市街道上的行驶速度不得超过”,一辆小汽车在一条城市街道上由西向东行驶,在据路边处有“车速检测仪”,测得该车从北偏西的点行驶到北偏西的点,所用时间为.
(1)试求该车从点到点的平均速度(结果保留根号);
(2)试说明该车是否超速.
22.(10分)为了了解班级学生数学课前预习的具体情况,郑老师对本班部分学生进行了为期一个月的跟踪调查,他将调查结果分为四类:A:很好;B:较好;C:一般;D:不达标,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)C类女生有 名,D类男生有 名,将上面条形统计图补充完整;
(2)扇形统计图中“课前预习不达标”对应的圆心角度数是 ;
(3)为了共同进步,郑老师想从被调查的A类和D类学生中各随机机抽取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率,
23.(10分)如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O 是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.
(1)判断直线AC与⊙O的位置关系,并说明理由;
(2)当BD=6,AB=10时,求⊙O的半径.
24.(10分)如图1,中,,是的中点,平分交于点,在的延长线上且.
(1)求证:四边形是平行四边形;
(2)如图2若四边形是菱形,连接,,与交于点,连接,在不添加任何辅助线的情况下,请直接写出图2中的所有等边三角形.
25.(12分)如图,为线段的中点,与交于点,,且交于,交于.
(1)证明:.
(2)连结,如果,,,求的长.
26.(12分)如图,抛物线与直线交于A、B两点.点A的横坐标为-3,点B在y轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于C,交直线AB于D.
(1)求抛物线的解析式;
(2)当m为何值时,;
(3)是否存在点P,使△PAD是直角三角形,若存在,求出点P的坐标;若不存在,说明理由.
参考答案
一、选择题(每题4分,共48分)
1、B
2、C
3、B
4、A
5、D
6、A
7、C
8、A
9、C
10、D
11、B
12、B
二、填空题(每题4分,共24分)
13、或
14、2
15、
16、x≥1且x≠1
17、-1
18、
三、解答题(共78分)
19、(1)y=-20x+1600;(2)当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元.
20、 (1)见解析;(2)见解析;(3) .
21、(1);(2)没有超过限速.
22、(1)3,1;(2)36°;(3)
23、(1)(1)AC与⊙O相切,证明见解析;(2)⊙O半径是.
24、(1)详见解析;(2)△ACF、、、
25、(1)见解析;(2)
26、(1)y=x1+4x-1;(1)∴m=,-1,或-3时S四边形OBDC=1SS△BPD
相关试卷
这是一份浙江省湖州市吴兴区十学校2023-2024学年九上数学期末教学质量检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份浙江省湖州市德清县2023-2024学年数学九年级第一学期期末达标检测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
这是一份浙江省湖州市2023-2024学年八上数学期末达标检测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列各式中计算结果为的是,若关于的分式方程无解,则的值是,满足下列条件的是直角三角形的是等内容,欢迎下载使用。