山西省运城市万荣县2022-2023学年八年级上学期期末模拟测试数学试卷(含解析)
展开
这是一份山西省运城市万荣县2022-2023学年八年级上学期期末模拟测试数学试卷(含解析),共15页。试卷主要包含了选择题等内容,欢迎下载使用。
1. 下列防疫的图标中是轴对称图形的是( )
A. B. C. D.
2. 肥皂泡的泡壁厚度大约是,用科学记数法表示为( ).
A. 7×10-4B. 7×10-5C. 0.7×10-4D. 0.7×10-5
3. 下列运算正确的是( )
A. B.
C. D.
4. 如与的乘积中不含的一次项,则的值为( )
A. B. 3C. 0D. 1
5. 若一个正多边形的一个内角与它相邻的外角的比是,则这个正多边形的边数为( )
A. 14B. 12C. 10D. 8
6. 已知一个等腰三角形两个内角度数之比为1:4,则这个等腰三角形顶角度数为( )
A. 75°B. 90°C. 105°D. 120°或20°
7. 若,,则的值为( )
A. 4B. -4C. D.
8. 化简.这个代数式的值和a,b哪个字母的取值无关.( )
A. a和bB. a
C. bD. 不能确定
9. 如图,已知点P是∠AOB角平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,DM=4cm,如果点C是OB上一个动点,则PC的最小值为( )
A. 2B. C. 4D.
10. 如图,在△ABC中,∠A∶∠B∶∠C=3∶5∶10,又△MNC≌△ABC,则∠BCM∶∠BCN等于( )
A. 1∶2B. 1∶3C. 2∶3D. 1∶4
二.填空题(共5题,总计 15分)
11. 若分式有意义,则的取值范围是__________.
12. 若分式有意义,则实数x的取值范围是_______.
13. 若a=(﹣2020)0,b=(﹣0.1)﹣1,c=(﹣)﹣2,则a、b、c大小关系为_____.(用“<”号连接)
14. 有一三角形纸片ABC,∠A=70°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两个纸片均为等腰三角形,则∠C的度数可以是_____.
15. 如图,在正方形中,,延长到点,使,连接,动点从点出发,以每秒的速度沿向终点运动.设点的运动时间为秒,当和全等时,的值为 __.
三.解答题(共8题,总计75分)
16. 计算:
(1)
(2)
17. 化简:.
18. 在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为.
(1)请在如图所示的网格内作出x轴、y轴;
(2)请作出∆ABC关于y轴对称的∆,并写出点的坐标;
(3)求出∆的面积.
19. 如图,点M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P.
(1)求证:△ABM≌△BCN;
(2)求∠APN的度数.
20. 如图,在△ABC中,射线AM平分∠BAC.
(1)尺规作图(不写作法,保留作图痕迹)作BC的中垂线,与AM相交于点G,连接BG、CG;
(2)在(1)条件下,∠BAC和∠BGC有何数量关系?并证明你的结论.
21. 阅读以下材料
材料:因式分解:
解:将“”看成整体,令,则原式
再将“A”还原,得原式
上述解题用到是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:
(1)因式分解:______;
(2)因式分解:;
22. 甘蔗富含铁、锌等人体必需的微量元素,素有“补血果”的美称,是冬季热销的水果之一.为此,某水果商家12月份第一次用600元购进云南甘蔗若干千克,销售完后,他第二次又用600元购进该甘蔗,但这次每千克的进价比第一次的进价提高了,所购进甘蔗的数量比第一次少了.
(1)该商家第一次购进云南甘蔗的进价是每千克多少元?
(2)假设商家两次购进的云南甘蔗按同一价格销售,要使销售后获利不低于1000元,则每千克的售价至少为多少元?
23. 如图:已知点A(0,1),点B在第一象限,△OAB是等边三角形,点C是X轴上的动点,以AC为边作等边三角形△ACD(A、C、D三点按逆时针排列),直线BD交Y轴于点E
①求证:△CAO≌△DAB;
②点C运动时,点E是动点还是定点?若是动点,指出其运动路径;若是定点,求其坐标;
③ 连接CE,若∠ACD=25°,求∠CED的度数.
万荣县2022-2023学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:C
解析:解:轴对称图形定义:把一个图形沿某条直线对折,对折后直线两旁的部分能完全重合.发现A,B,D都不符合定义,所以A,B,D都错误,只有C符合,所以C正确.
故答案为C.
2.【答案】:B
解析:解:0.00007=7×10-5.
故选B.
2.【答案】:D
解析:A. ,故该选项不正确,不符合题意;
B. ,故该选项不正确,不符合题意;
C. ,故该选项不正确,不符合题意;
D. ,故该选项正确,符合题意;
故选:D.
4.【答案】:A
解析:,
又与的乘积中不含的一次项,
,
解得.
故选:A.
5.【答案】:B
解析:解:设这个正多边的外角为x°,由题意得:
x+5x=180,
解得:x=30,
.
故选B.
6.【答案】:D
解析:解:设两内角的度数为x、4x,
当等腰三角形的顶角为x时,x+4x+4x=180°,x=20°;
当等腰三角形的顶角为4x时,4x+x+x=180°,x=30°,4x=120°;
因此等腰三角形的顶角度数为20°或120°.
故选:D.
7.【答案】:A
解析:因为,
所以,
因为,
所以,
联立方程组可得:
解方程组可得,
所以,
故选A.
8.【答案】:C
解析:
,
则这个代数式的值与字母b的取值无关,
故选:C.
9.【答案】:C
解析:解:∵P是∠AOB角平分线上的一点,∠AOB=60°,
∴∠AOP=∠AOB=30°,
∵PD⊥OA,M是OP的中点,DM=4cm,
∴OP=2DM=8,
∴PD=OP=4,
∵点C是OB上一个动点,
∴PC的最小值为P到OB距离,
∴PC的最小值=PD=4.
故选C
10.【答案】:D
解析:在△ABC中,∠A:∠B:∠C=3:5:10
设∠A=3x°,则∠ABC=5x°,∠ACB=10x°
3x+5x+10x=180
解得x=10
则∠A=30°,∠ABC=50°,∠ACB=100°
∴∠BCN=180°-100°=80°
又△MNC≌△ABC
∴∠ACB=∠MCN=100°
∴∠BCM=∠NCM-∠BCN=100°-80°=20°
∴∠BCM:∠BCN=20°:80°=1:4
故选D
二. 填空题
11.【答案】:
解析:解:∵分式有意义,
∴,
∴ .
故答案为 .
12.【答案】:x≠5
解析:解:∵分式有意义,
∴x-5≠0,即x≠5.
故答案为x≠5.
13.【答案】:.
解析:,,,
∵,
∴,
故答案为:.
14.【答案】: 20°或35°或27.5°
解析:由题意知△ABD与△DBC均为等腰三角形,
对于△ABD可能有①AB=BD,此时∠ADB=∠A=70°,
∴∠BDC=180°﹣∠ADB=180°﹣70°=110°,
∠C=(180°﹣110°)=35°,
②AB=AD,此时∠ADB=(180°﹣∠A)=(180°﹣70°)=55°,
∴∠BDC=180°﹣∠ADB=180°﹣55°=125°,
∠C=(180°﹣125°)=27.5°,
③AD=BD,此时,∠ADB=180°﹣2×70°=40°,
∴∠BDC=180°﹣∠ADB=180°﹣40°=140°,
∠C=(180°﹣140°)=20°,
综上所述,∠C度数可以为20°或35°或27.5°.
故答案为:20°或35°或27.5°
15.【答案】: 2或7
解析:∵正方形ABCD,
∴
是直角三角形,
为直角三角形,
点只能在上或者上,
当点在上时,如图,当时,有,
,
,
,
当点在上时,则当时,有,
,
故答案为:2或7.
三.解答题
16【答案】:
(1)
(2)
解析:
【小问1解析】
解:原式
.
【小问2解析】
解:原式
.
17【答案】:
解析:
解:原式=
=
= .
18【答案】:
(1)点C向右平移一个格为y轴,点C向下平移3个格为x轴,两轴交点为原点O,建立如图平面直角坐标系,图形见解析;
(2)图形见解析,;
(3)4.
解析:
(1)点C向右平移一个格为y轴,点C向下平移3个格为x轴,两轴交点为原点O,建立如图平面直角坐标系,点B坐标为(-2,1);
(2)∆ABC关于y轴对称的∆,关于y轴对称点的坐标特征是横坐标互为相反数,纵坐标不变,
∵点,
∴它们的对称点,
在平面直角坐标系中,描点,然后顺次连结,
则∆ABC关于y轴对称的三角形是∆ ,点;
(3)过C1、A1作平行y轴的直线,与过第A1、B1作平行x轴的平行线交于E,A1,F,G,
∴,
=,
=12-3-1-4,
=4.
19【答案】:
(1)证明见解析;
(2)∠APN的度数为108°.
解析:
证明:(1)∵正五边形ABCDE,
∴AB=BC,∠ABM=∠C,
∴在△ABM和△BCN中
,
∴△ABM≌△BCN(SAS);
(2)∵△ABM≌△BCN,
∴∠BAM=∠CBN,
∵∠BAM+∠ABP=∠APN,
∴∠CBN+∠ABP=∠APN=∠ABC==108°.
即∠APN的度数为108°.
20【答案】:
(1)详见解析;(2)∠BAC+∠BGC=180°,证明详见解析.
解析:
解:(1)线段BC的中垂线EG如图所示:
(2)结论:∠BAC+∠BGC=180°.
理由:在AB上截取AD=AC,连接DG.
∵AM平分∠BAC,
∴∠DAG=∠CAG,
在△DAG和△CAG中
∵
∴△DAG≌△CAG(SAS),
∴∠ADG=∠ACG,DG=CG,
∵G在BC的垂直平分线上,
∴BG=CG,
∴BG=DG,
∴∠ABG=∠BDG,
∵∠BDG+∠ADG=180°,
∴∠ABG+∠ACG=180°,
∵∠ABG+∠BGC+∠ACG+∠BAC=360°,
∴∠BAC+∠BGC=180°.
21【答案】:
(1)
(2)
解析:
【小问1解析】
解:
=
=;
故答案为:;
【小问2解析】
设,
原式,
将A还原,则原式;
22【答案】:
(1)2元;(2)4元.
解析:
(1)设该商家第一次购买云南甘蔗的进价是每千克元,
根据题意可知:,
,
经检验,是原方程的解,
答:该商家第一次购买云南甘蔗的进价是每千克2元;
(2)设每千克的售价为元,
第一次销售了千克,第二次销售了250千克,
根据题意可知:
,
解得:,
答:每千克的售价至少为4元.
23【答案】:
①证明见解析;②是定点;E(0,1);③∠CED为85°或35°.
解析:
①证明:∵△ACD与△OAB为等边三角形,
∴AC=AD,AO=AB,∠CAD=∠OAB,
∴∠CAO=∠DAB,
∴△CAO≌△DAB;
②点E是定点,
∵A(0,1),
∴OA=AB=1,
由①得∠ABD=∠AOC=90° ,
又∵∠OAB=60°,
∴∠AEB=30°,
∴AE=2AB=2,
OE=AE-OA=2-1=1,
∴E(0,1),
③由①得∠ADB=∠ACO=25°,由②得x轴垂直平分AE,
∴AC=EC,
又∵AC=DC,
∴CE=CD,
∴∠CED=∠CDE,
当D在第三象限时,∠CED=∠CDE=60+25=85°,
当D在第一象限时,∠CED=∠CDE=60-25=35°,
∴∠CED为85°或35°.
相关试卷
这是一份山西省运城市永济市2022-2023学年七年级上学期期末模拟测试数学试卷(含解析),共15页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份山西省运城市闻喜县2022-2023学年七年级上学期期末模拟测试数学试卷(含解析),共12页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份山西省运城市临猗县2022-2023学年八年级上学期期末模拟测试数学试卷(含解析),共15页。试卷主要包含了选择题等内容,欢迎下载使用。