|试卷下载
终身会员
搜索
    上传资料 赚现金
    2023-2024学年安徽省安庆市怀宁县高河中学高二上学期第二次月考数学试题含答案
    立即下载
    加入资料篮
    2023-2024学年安徽省安庆市怀宁县高河中学高二上学期第二次月考数学试题含答案01
    2023-2024学年安徽省安庆市怀宁县高河中学高二上学期第二次月考数学试题含答案02
    2023-2024学年安徽省安庆市怀宁县高河中学高二上学期第二次月考数学试题含答案03
    还剩13页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023-2024学年安徽省安庆市怀宁县高河中学高二上学期第二次月考数学试题含答案

    展开
    这是一份2023-2024学年安徽省安庆市怀宁县高河中学高二上学期第二次月考数学试题含答案,共16页。试卷主要包含了单选题,多选题,填空题,解答题,证明题等内容,欢迎下载使用。

    一、单选题
    1.若直线与直线垂直,则实数的值为( )
    A.1或3B.1或3C.1或3D.1或3
    【答案】A
    【分析】利用两线垂直的判定有,求解即可得的值.
    【详解】由题设,,即,解得或.
    当时,直线分别为、,符合题设;
    当时,直线分别为、,符合题设.
    故选:A
    2.如图,三棱锥中,M,N分别是,的中点,G为线段上一点,且,记,,,则( )
    A.B.C.D.
    【答案】C
    【分析】利用给定的空间向量的基底,结合空间向量的线性运算求解作答.
    【详解】因为M,N分别是,的中点,则,
    又G为线段上一点,且,即,于是,
    所以.
    故选:C
    3.已知点在焦点为F的抛物线上,若,则( )
    A.4B.8C.12D.16
    【答案】B
    【分析】根据抛物线的定义,结合代入法进行求解即可.
    【详解】抛物线的准线方程为,
    由,点在物线上,
    所以,
    故选:B
    4.若,则“”是方程“”表示椭圆的
    A.充分不必要条件B.必要不充分条件
    C.充要条件D.既不充分也不必要条件
    【答案】B
    【详解】方程表示椭圆,得 且,综上所述,“”不能推出“”表示椭圆,“”表示椭圆能推出“”, “”是方程“”表示椭圆的必要不充分条件,故选B.
    5.已知圆,则当圆的面积最小时,圆上的点到坐标原点的距离的最大值为( )
    A.B.C.D.
    【答案】D
    【分析】根据圆的一般方程,得到圆心和半径,求出面积最小时对应的半径,再求得圆心到坐标原点的距离,进而可求出结果.
    【详解】解:由题意得:
    由得
    圆心为,半径为,
    当且仅当时,半径最小,则面积也最小;
    圆心为,半径为,
    圆心到坐标原点的距离为,
    即原点在圆外,根据圆的性质,圆上的点到坐标原点的距离的最大值为.
    故选:D.
    6.已知双曲线与直线相交于A、B两点,弦AB的中点M的横坐标为,则双曲线C的渐近线方程为( )
    A.B.C.D.
    【答案】A
    【分析】设,,利用点差法结合中点坐标可得,从而可求双曲线C的渐近线方程.
    【详解】设,,则,由点差法得.
    ∵,∴,,∴,又,
    ∴,∴渐近线方程为.
    故选:A.
    7.双曲线的左右焦点分别是,,直线与双曲线在第一象限的交点为,在轴上的投影恰好是,则双曲线的离心率是( )
    A.B.C.D.
    【答案】D
    【分析】根据题意的到,,代入到双曲线方程,解得,即,则,即,即,求解方程即可得到结果.
    【详解】设原点为,∵直线与双曲线在第一象限的交点在轴上的投影恰好是,
    ∴,且,∴,
    将代入到双曲线方程,可得,解得,即,
    则,即,即,解得(舍负),
    故.
    故选:D.
    8.抛物线的焦点为F,其准线与双曲线的渐近线相交于A,B两点,若的周长为,则( )
    A.2B.C.8D.4
    【答案】A
    【分析】设A在x轴上方,根据双曲线和抛物线的定义表示出,,列出方程,解之即可.
    【详解】双曲线的渐近线方程为,
    抛物线的准线方程为,
    设A在x轴上方,则,,
    ∴,.
    又∵的周长为,
    ∴,
    ∴.
    故选:A.
    二、多选题
    9.下面四个结论正确的是( )
    A.向量,若,则
    B.若空间四个点,,,,,则,,三点共线
    C.已知向量,,若,则
    D.任意向量,满足
    【答案】ABC
    【分析】由空间向量的数量积及其运算性质可判断A,由空间向量的基本定理与共线定理以及向量基底可判断B,根据空间向量共线的坐标表示可判断C,利用数量积的定义判断D.
    【详解】对于A:因为,,则,正确;
    对于B:因为,则,
    即,又与有公共点,所以三点共线,正确;
    对于C:因为向量,,,
    所以存在,使得,即,
    则,解得,正确;
    对于D:表示平行于的向量,表示平行于的向量,
    当与不平行时,一定不成立,错误.
    故选:ABC
    10.已知直线l:和圆O:,则( )
    A.直线l恒过定点
    B.存在k使得直线l与直线:垂直
    C.直线l与圆O相交
    D.直线l被圆O截得的最短弦长为
    【答案】BC
    【分析】利用直线方程求定点可判断选项A;利用两直线的垂直关系与斜率的关系判断选项B;利用直线恒过定点在圆内可判断选项C;利用弦长公式可判断选项D.
    【详解】对A,由可得,,
    令,即,此时,所以直线l恒过定点,A错误;
    对B,因为直线:的斜率为,所以直线l的斜率为,即,
    此时直线l与直线垂直,满足题意,B正确;
    对C,因为定点到圆心的距离为,
    所以定点在圆内,所以直线l与圆O相交,C正确;
    对D,因为直线l恒过定点,圆心到直线l的最大距离为,
    此时直线l被圆O截得的弦长最短为,D错误;
    故选:BC.
    11.下列四个命题中,正确命题有( )
    A.当a为任意实数时,直线恒过定点P,则过点P且焦点在y轴上的抛物线的标准方程是
    B.已知双曲线的右焦点为,一条渐近线方程为,则双曲线的标准方程是
    C.若,则动点P的轨迹是双曲线左边一支
    D.已知双曲线,其离心率,则m的取值范围是
    【答案】ABD
    【分析】对于A,求出点的坐标即可判断;对于B,根据条件可得,即可判断;对于C,根据双曲线的定义与性质即可判断;对于D,得到,然后即可判断.
    【详解】对于A,当a为任意实数时,直线恒过定点P,
    因为方程可化为,
    令,则,所以,
    设焦点在y轴上的抛物线的标准方程为,根据点位于第二象限知,
    代入点得,解得,所以标准方程为,故A正确;
    对于B,由双曲线的右焦点为,一条渐近线方程为,
    则,,,解得,
    故双曲线的标准方程是,故B正确;
    对于C,因为,则,
    则动点P的轨迹是双曲线右边一支,故C错误;
    对于D,根据题意,双曲线,其离心率,
    即,则,故D正确.
    故选:ABD.
    12.椭圆的两个焦点分别为,,为坐标原点,以下说法正确的是( )
    A.椭圆的离心率为
    B.椭圆上存在点,使得
    C.过点的直线与椭圆交于,两点,则的面积最大值为
    D.定义曲线为椭圆的伴随曲线,则曲线与椭圆无公共点
    【答案】BD
    【分析】利用椭圆方程给出的信息逐项分析、推理、计算即可判断作答.
    【详解】对于A:因,,则,即,离心率, A错误;
    对于B:以线段为直径的圆O:,显然椭圆的短轴端点在圆O内,于是得圆O与椭圆C有公共点,
    即椭圆上存在点,有,则,B正确;
    对于C:显然直线AB不垂直于y轴,将直线的方程代入椭圆的方程得:,
    设,,,
    因此,
    因为,当且仅当取等号,则,C错误;
    对于D:椭圆中,,而伴随曲线中,,
    因此,曲线与椭圆C不可能有公共点,D正确.
    故选:BD
    三、填空题
    13.抛物线的焦点坐标为 .
    【答案】
    【分析】化成标准形式,结合焦点定义即可求解.
    【详解】由,得,故抛物线的焦点坐标为.
    故答案为:
    14.过点做圆的切线l,则l的方程为 .
    【答案】或
    【分析】由题可得圆C:,圆C切线到圆心距离为圆半径,后分斜率不存在及斜率存在两种情况可求得切线方程.
    【详解】由题可得圆C:.
    当切线l斜率不存在时,由l到圆心距离为1且过,则满足题意;
    当切线l斜率存在时,设,因l到圆心距离为1,则,故此时l方程为:.综上,切线l的方程为或.
    故答案为:或.
    15.若直线与曲线恰有一个公共点,则实数b的取值范围为 .
    【答案】
    【分析】曲线表示以原点为圆心、半径为1的半圆,数形结合求得当直线与曲线恰有一个公共点的实数b的取值范围作答.
    【详解】曲线,即,表示以原点为圆心、1为半径的半圆(位于y轴及右侧的部分),如图,

    当直线经过点时,;当直线经过点时,;
    当直线和圆相切时,由圆心到直线的距离等于半径可得,求得(舍去),或,
    观察图象,得当直线与曲线恰有一个公共点,实数b的取值范围为.
    故答案为:
    【点睛】方法点睛:处理直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.
    16.若点P在椭圆C1:+y2=1上,C1的右焦点为F,点Q在圆C2:x2+y2+10x-8y+39=0上,则的最小值为 .
    【答案】
    【分析】根据椭圆的定义得,结合圆的性质以及四点共线即可求解最小值.
    【详解】记椭圆C1:+y2=1的左焦点为E(-1,0),右焦点F(1,0),
    由椭圆的定义可得,,
    所以,
    由,得 ,即圆C2的圆心为,半径为,
    作出图形如图所示,由圆的性质可得,,==4-3= (当且仅当C2,Q,P,E四点共线时,等号成立),
    所以的最小值为.
    故答案为:
    四、解答题
    17.求满足以下条件的参数的值.
    (1)若直线:和直线:平行,求m的值.
    (2)已知直线经过点,,直线经过点,,若,求a的值.
    【答案】(1)
    (2)或
    【分析】(1)由两直线平行,根据平行的判定求的值即可.
    (2)当两直线的斜率都存在时,由斜率之积等于求解;若一条直线的斜率不存在,由另一条直线的斜率为0求解.
    【详解】(1)直线和直线平行,
    ,解得或,
    当时,直线:和直线:平行,
    当时,直线:和直线:重合,
    所以;
    (2)由题意,知直线的斜率一定存在,直线的斜率可能不存在.
    当直线的斜率不存在时,,即,此时,则,满足题意.
    当直线的斜率存在时,,
    由斜率公式,得.
    由,知,即,解得.
    综上所述,或.
    18.已知圆,直线.
    (1)当为何值时,直线与圆相切;
    (2)当直线与圆相交于,两点,且时,求直线的方程.
    【答案】(1)
    (2)或
    【分析】(1)由题设可得圆心为,半径,根据直线与圆的相切关系,结合点线距离公式列方程求参数a的值即可.
    (2)根据圆中弦长、半径与弦心距的几何关系列方程求参数a,即可得直线方程.
    【详解】(1)圆的标准方程为,圆心,半径为,
    若直线与圆相切,则有,解得.
    (2)设圆心到直线的距离为,则有
    即,即,由,解得或
    所以直线的方程为或.
    五、证明题
    19.如图,四棱锥中,平面,,,,、分别为、的中点.
    (1)求证:平面;
    (2)求点到平面的距离.
    【答案】(1)证明见解析
    (2)
    【分析】(1)设是的中点,连接,,证明四边形是平行四边形,可得,再根据线面平行的判定定理即可得证;
    (2)利用等体积法求解即可.
    【详解】(1)设是的中点,连接,,
    由于是的中点,
    所以,,
    由于,,
    所以,,
    所以四边形是平行四边形,
    所以,
    由于平面,平面,
    所以平面;
    (2)设到平面的距离为,
    因为平面,平面,所以,
    由于,,所以四边形是平行四边形,
    由于,所以,
    由于平面,
    所以平面,
    又平面,所以,
    由,
    得,
    即,
    所以点到平面的距离为.

    六、解答题
    20.已知椭圆:的离心率为,且过点.
    (1)求椭圆的方程;
    (2)过椭圆的右焦点,倾斜角为的直线交椭圆于,两点,求的面积.
    【答案】(1);(2).
    【解析】(1)根据离心率,得到,再结合点在椭圆上求解.
    (2)由题意得到直线方程为,与椭圆方程联立,利用韦达定理求得,再由求解.
    【详解】(1)由题,
    ∴,
    将点代入椭圆:,
    得.
    故椭圆的方程为:.
    (2)过右焦点,斜率的直线方程:,
    联立,化简得,
    设,,则,
    所以,
    所以.
    七、证明题
    21.已知抛物线过点.
    (1)求抛物线的方程;
    (2)求过点的直线与抛物线交于、两个不同的点(均与点不重合).设直线、的斜率分别为、,求证:为定值.
    【答案】(1);(2)证明见解析.
    【解析】(1)本题可将代入抛物线方程中求出的值,即可得出结果;
    (2)本题首先可设、以及直线的方程,然后通过联立直线的方程与抛物线方程即可得出、,最后通过并化简即可得出结果.
    【详解】(1)因为抛物线过点,
    所以,,抛物线方程为.
    (2)设,,直线的方程为,
    联立,整理得,
    ,,,


    故为定值.
    【点睛】关键点点睛:本题考查抛物线方程的求法以及抛物线与直线相交的相关问题的求解,通过联立直线的方程与抛物线方程以及韦达定理得出、的值是解决本题的关键,考查计算能力,考查化归与转化思想,是中档题.
    22.如图,在四棱锥中,平面,四边形是平行四边形,,,分别是棱,的中点,且.
    (1)证明:平面平面.
    (2)求平面与平面所成二面角的正弦值.
    【答案】(1)证明见解析(2)
    【分析】(1)要证平面平面,即证平面;
    (2)建立空间直角坐标系,求出两个平面的法向量,利用向量公式求解即可.
    【详解】(1)∵,是棱的中点,
    ∴,又,
    ∴,
    ∵平面,平面,
    ∴,又,
    ∴平面,又平面,
    ∴平面平面;
    (2)由题知平面,中,,
    则两两垂直,
    以为原点,分别为轴建立空间直角坐标系,
    不妨设,又,
    易得,
    ∴ ,
    设平面与平面的法向量分别为和,
    则 ,即,
    令,可得,
    则 ,即,
    令,可得,
    ∴,
    设平面与平面所成二面角为,
    则,
    ∴平面与平面所成二面角的正弦值为.
    【点睛】方法点睛:空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.
    相关试卷

    2024届安徽省安庆市怀宁县高河中学高三上学期12月月考数学试题含答案: 这是一份2024届安徽省安庆市怀宁县高河中学高三上学期12月月考数学试题含答案,共17页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年安徽省安庆市怀宁县第二中学高二上学期期中数学试题含答案: 这是一份2023-2024学年安徽省安庆市怀宁县第二中学高二上学期期中数学试题含答案,共21页。试卷主要包含了单选题,多选题,填空题,解答题,证明题等内容,欢迎下载使用。

    安徽省安庆市怀宁县高河中学2023-2024学年高二上册第三次月考数学试题(含解析): 这是一份安徽省安庆市怀宁县高河中学2023-2024学年高二上册第三次月考数学试题(含解析),共16页。试卷主要包含了选择题,多选题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2023-2024学年安徽省安庆市怀宁县高河中学高二上学期第二次月考数学试题含答案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map