2023-2024学年辽宁省沈阳市大东区九年级(上)期末数学试卷(含解析)
展开
这是一份2023-2024学年辽宁省沈阳市大东区九年级(上)期末数学试卷(含解析),共20页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
1.如图是由5个相同的小立方块搭成的几何体,这个几何体的主视图是( )
A.
B.
C.
D.
2.用配方法解方程x2−6x−3=0,此方程可变形为( )
A. (x−3)2=3B. (x−3)2=6C. (x+3)2=12D. (x−3)2=12
3.如图,在平面直角坐标系中,已知点A(−3,6)、B(−9,−3),以原点O为位似中心,相似比为13,把△ABO缩小,则点A的对应点A′的坐标是( )
A. (−1,2)B. (−9,18)
C. (−9,18)或(9,−18)D. (−1,2)或(1,−2)
4.若关于x的方程x2+x+c=0有两个相等的实数根,则实数c的值为( )
A. 15B. 14C. 13D. 12
5.一个不透明的袋中装有4个白球,若干个红球,这些球除颜色外完全相同.通过多次摸球试验后发现,摸到白球的频率稳定在0.4附近,则袋中红球的个数是( )
A. 2B. 5C. 6D. 10
6.关于反比例函数y=6x的图象与性质,下列说法正确的是( )
A. 图象分布在第二、四象限B. y的值随x值的增大而减小
C. 当x>−2时,y0)的图象上,AB⊥y轴于点B,tan∠AOB=12,AB=2.
(1)求反比例函数的表达式;
(2)分别以点O,A为圆心,大于OA一半的长为半径作圆弧,两弧相交于点C和点D,作直线CD,交x轴于点E,求线段OE的长.
20.(本小题8分)
如图1是某越野车的侧面示意图,折线段ABC表示车后盖,已知AB=1m,BC=0.6m,∠ABC=123°,该车的高度AO=1.7m.如图2,打开后备箱,车后盖ABC落在AB′C′处,AB′与水平面的夹角∠B′AD=27°.
(1)求打开后备箱后,车后盖最高点B′到地面l的距离;
(2)若小明爸爸的身高为1.83m,他从打开的车后盖C处经过,有没有碰头的危险请说明理由.(结果精确到0.01m,参考数据:sin27°≈0.454,cs27°≈0.891,tan27°≈0.510, 3≈1.732)
21.(本小题8分)
如图,一位足球运动员在一次训练中,从球门正前方8m的A处射门,已知球门高OB为2.44m,球射向球门的路线可以看作是抛物线的一部分.当球飞行的水平距离为6m时,球达到最高点,此时球的竖直高度为3m.
现以O为原点,如图建立平面直角坐标系.
(1)求抛物线表示的二次函数解析式;
(2)通过计算判断球能否射进球门(忽略其他因素);
(3)若运动员射门路线的形状、最大高度均保持不变,则他应该带球向正后方移动______ 米射门,才能让足球经过点O正上方2.25m处.
22.(本小题12分)
【问题初探】
(1)“综合与实践”课上,老师提出如下问题:如图1,在△ABC中,AB=AC,DB是腰AC上的高,P是边BC上不与B和C重合的一个动点,过点P分别作AB和AC的垂线,垂足为E,F.求证:BD=PE+PF;
①如图2,小丽同学从结论的角度出发,给出如下解题思路:过P作PH⊥BD于点H,将线段PE,PF,BD之间的关系转化为线段BH,HD,BD之间的数量关系.
②如图3,小亮同学从PE,PF,BD均为三角形腰上的高出发,连接AP,用等面积方法得到结论.
请你选择一名同学的解题思路,写出证明过程.
【类比分析】
(2)如图4,在矩形ABCD中,AB=3,AD=4,P是边AD上不与A和D重合的一个动点,过点P分别作AC和BD的垂线,垂足为E,F.求PE+PF的值;
【学以自用】
(3)如图5,在四边形ABCD中,BC=10,∠BAD=165°,∠ADC=135°,∠C=30°,P是边BC上不与B和C重合的一个动点,过点P分别作AB和CD的垂线,垂足为E,F.求PE+PF的值.
23.(本小题12分)
综合与实践:
【思考尝试】(1)数学活动课上,老师出示了一个问题:如图1,在矩形ABCD中,E是边AB上一点,DF⊥CE于点F,GD⊥DF,AG⊥DG,AG=CF,试猜想四边形ABCD的形状,并说明理由;
【实践探究】(2)小睿受此问题启发,逆向思考并提出新的问题:如图2,在正方形ABCD中,E是边AB上一点,DF⊥CE于点F,AH⊥CE于点H,GD⊥DF交AH于点G,可以用等式表示线段FH,AH,CF的数量关系,请你思考并解答这个问题;
【拓展迁移】(3)小博深入研究小睿提出的这个问题,发现并提出新的探究点:如图3,在正方形ABCD中,E是边AB上一点,AH⊥CE于点H,点M在CH上,且AH=HM,连接AM,BH,可以用等式表示线段CM,BH的数量关系,请你思考并解答这个问题.
答案和解析
1.【答案】A
【解析】解:此几何体的主视图从左往右分3列,小正方形的个数分别是1,2,1.
故选:A.
找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.
本题考查了简单组合体的三视图,主视图是从物体的正面看得到的视图.
2.【答案】D
【解析】解:由原方程移项,得
x2−6x=3,
方程两边同时加上一次项系数一半的平方,得
x2−6x+9=12,
配方,得
(x−3)2=12.
故选:D.
在本题中,把常数项−3移项后,应该在左右两边同时加上一次项系数−6的一半的平方.
配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
3.【答案】D
【解析】解:∵点A(−3,6),以原点O为位似中心,相似比为13,把△ABO缩小,
∴点A的对应点A′的坐标是(−3×13,6×13)或(−3×(−13),6×(−13)),
即(−1,2)或(1,−2).
故选:D.
根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k解答.
本题考查的是位似变换的概念和性质.
4.【答案】B
【解析】解:∵关于x的一元二次方程x2+x+c=0有两个相等的实数根,
∴Δ=b2−4ac=12−4c=0,
解得c=14.
故选:B.
若一元二次方程有两个相等的实数根,则根的判别式Δ=b2−4ac=0,建立关于c的方程,求出c的值即可.
本题考查了根的判别式,掌握一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2−4ac有如下关系:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ0,图象分布在第一、三象限,故A说法不正确;
B.k=6>0,图象在第一、三象限内,在每一象限内,y随x增大而减小,故B说法错误;
C.k=6>0,图象在第一、三象限内,在每一象限内,y随x增大而减小,所以当−2
相关试卷
这是一份辽宁省沈阳市大东区2023-2024学年九年级上学期期末数学试卷,共19页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年辽宁省沈阳市大东区九年级(上)期末数学试卷(含详细答案解析),共20页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年辽宁省沈阳市大东区九年级(上)期末数学试卷(含解析),共20页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。