德州陵城区五校联考2023-2024学年数学八上期末质量检测模拟试题含答案
展开
这是一份德州陵城区五校联考2023-2024学年数学八上期末质量检测模拟试题含答案,共8页。试卷主要包含了如果,那么的值为,如图,图形中,具有稳定性的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)
1.如图,AC=AD,BC=BD,则有( )
A.AB垂直平分CDB.CD垂直平分AB
C.AB与CD互相垂直平分D.CD平分∠ACB
2.已知:如图,在△ABC中,D为BC的中点,AD⊥BC,E为AD上一点,∠ABC=60°,∠ECD=40°,则∠ABE=( )
A.10°B.15°C.20°D.25°
3.上体育课时,小明5次投掷实心球的成绩如下表所示,则这组数据的众数与中位数分别是( )
A.8.2,8.2B.8.0,8.2C.8.2,7.8D.8.2,8.0
4.以下列各组线段为边,能组成三角形的是().
A.2cm,3cm,5cmB.5cm,6cm,10cm
C.1cm,1cm,3cmD.3cm,4cm,9cm
5.如果,那么的值为( )
A.B.C.3D.-3
6.直角三角形的两条边长分别是5和12,它的斜边长为( )
A.13B.C.13或12D.13或
7.如图,图形中,具有稳定性的是( )
A.B.C.D.
8.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为( )
A.5B.5或6C.5或7D.5或6或7
9.某射击小组有20人,教练根据他们某次射击命中环数的数据绘制成如图的统计图,则这组数据的众数和极差分别是( )
A.10、6B.10、5C.7、6D.7、5
10.能说明命题“如果两个角互补,那么这两个角一个是锐角,另一个是钝角”为假命题的两个角是 ( )
A.120°,60°B.95°,105°C.30°,60°D.90°,90°
二、填空题(每小题3分,共24分)
11.将直线向上平移3个单位,平移后所得直线的表达式为___________.
12.如图,在四边形ABCD中,AB=AC,BC=BD,若,则______.(用含的代数式).
13.已知长为、宽为的长方形的周长为16,面积为15,则__________.
14.分式方程: 的解是__________.
15.如图,一个蚂蚁要在一个长、宽、高分别为2、3、1分米的长方体的表面从A点爬到B点,那么最短的路径是_______________分米.(结果保留根号)
16.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=______度.
17.如图,在△ABC中,AB=AC=24厘米,BC=16厘米,点D为AB的中点,点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为_______厘米/秒时,能够在某一时刻使△BPD与△CQP全等.
18.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是 (添加一个条件即可).
三、解答题(共66分)
19.(10分)已知:如图,和均为等腰直角三角形,,连结,,且、、三点在一直线上,,.
(1)求证:;
(2)求线段的长.
20.(6分)如图,已知和点、求作一点,使点到、的距离相等且.请作出点.(用直尺、圆规作图,不写作法,保留作图痕迹)
21.(6分)我们知道,有一个内角是直角的三角形是直角三角形,其中直角所在的两条边叫直角边,直角所对的边叫斜边(如图①所示).数学家还发现:在一个直角三角形中,两条直角边长的平方和等于斜边长的平方。即如果一个直角三角形的两条直角边长度分别是和,斜边长度是,那么。
(1)直接填空:如图①,若a=3,b=4,则c= ;若,,则直角三角形的面积是 ______ 。
(2)观察图②,其中两个相同的直角三角形边AE、EB在一条直线上,请利用几何图形的之间的面积关系,试说明。
(3)如图③所示,折叠长方形ABCD的一边AD,使点D落在BC边的点F处,已知AB=8,BC=10,利用上面的结论求EF的长?
22.(8分)阅读下列题目的解题过程:
已知为的三边,且满足,试判断的形状.
解:∵ ①
∴ ②
∴ ③
∴是直角三角形
问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号: ;
(2)该步正确的写法应是: ;
(3)本题正确的结论为: .
23.(8分)在平面直角坐标系xOy中,点A(t﹣1,1)与点B关于过点(t,0)且垂直于x轴的直线对称.
(1)以AB为底边作等腰三角形ABC,
①当t=2时,点B的坐标为 ;
②当t=0.5且直线AC经过原点O时,点C与x轴的距离为 ;
③若上所有点到y轴的距离都不小于1,则t的取值范围是 .
(2)以AB为斜边作等腰直角三角形ABD,直线m过点(0,b)且与x轴平行,若直线m上存在点P,上存在点K,满足PK=1,直接写出b的取值范围.
24.(8分)(1)(问题情境)小明遇到这样一个问题:
如图①,已知是等边三角形,点为边上中点,,交等边三角形外角平分线所在的直线于点,试探究与的数量关系.
小明发现:过作,交于,构造全等三角形,经推理论证问题得到解决.请直接写出与的数量关系,并说明理由.
(2)(类比探究)
如图②,当是线段上(除外)任意一点时(其他条件不变)试猜想与的数量关系并证明你的结论.
(3)(拓展应用)
当是线段上延长线上,且满足(其他条件不变)时,请判断的形状,并说明理由.
25.(10分)进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与指挥官的一段对话:
记者:你们是用天完成米长的大坝加固任务的,真了不起!
指挥官:我们加固米后,采用新的加固模式,这样每天加固长度是原来的倍.
通过对话,请你求出该地驻军原来每天加固多少米?
26.(10分)已知:直线m∥n,点A,B分别是直线m,n上任意两点,在直线n上取一点C,使BC=AB,连接AC,在直线AC上任取一点E,作∠BEF=∠ABC,EF交直线m于点F.
(1)如图1,当点E在线段AC上,且∠AFE=30°时,求∠ABE的度数;
(2)若点E是线段AC上任意一点,求证:EF=BE;
(3)如图2,当点E在线段AC的延长线上时,若∠ABC=90°,请判断线段EF与BE的数量关系,并说明理由.
参考答案
一、选择题(每小题3分,共30分)
1、A
2、C
3、D
4、B
5、A
6、A
7、B
8、D
9、D
10、D
二、填空题(每小题3分,共24分)
11、y=4x-1.
12、
13、1
14、
15、
16、120
17、4或6
18、AE=AD(答案不唯一).
三、解答题(共66分)
19、(1)详见解析;(2)
20、答案见解析
21、(1)5、;(2)见解析;(3)5
22、故答案为:(1)③;(2) 当a−b=0时,a=b;当a−b≠0时,a+b=c;(3)△ABC是直角三角形或等腰三角形或等腰直角三角形.
23、(1)①(3,1);② 1;③ 或 ;(2)当点D在AB上方时,若直线m上存在点P,上存在点K,满足PK=1,则;当点D在AB下方时,若直线m上存在点P,上存在点K,满足PK=1,则.或
24、(1),理由见解析;(2),理由见解析;(3)是等边三角形,理由见解析.
25、该地驻军原来每天加固米.
26、(1)30°;(2)见解析;(3)EF=BE,见解析
1
2
3
4
5
成绩(m)
8.2
8.0
8.2
7.5
7.8
相关试卷
这是一份德州陵城区五校联考2023-2024学年九上数学期末达标检测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,如图,点A是反比例函数y=,如图等内容,欢迎下载使用。
这是一份德州陵城区五校联考2023-2024学年数学九上期末质量检测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,图中几何体的俯视图是,下列哪个方程是一元二次方程等内容,欢迎下载使用。
这是一份浙江杭州上城区七校联考2023-2024学年八上数学期末达标检测模拟试题含答案,共6页。试卷主要包含了考生要认真填写考场号和座位序号,下列变形,是因式分解的是等内容,欢迎下载使用。