所属成套资源:备战2024年中考数学重难题型(全国通用)
- 专题20 二次函数与几何图形综合题(与面积问题)-备战2024年中考数学重难题型(全国通用) 试卷 0 次下载
- 专题21 二次函数与几何图形综合题(与特殊三角形问题)-备战2024年中考数学重难题型(全国通用) 试卷 0 次下载
- 专题22 二次函数与几何图形综合题(与三角形全等或三角形相似有关问题)-备战2024年中考数学重难题型(全国通用) 试卷 0 次下载
- 专题24 二次函数与几何图形综合题(与圆有关问题)-备战2024年中考数学重难题型(全国通用) 试卷 0 次下载
- 专题25 几何探究以四边形的性质为背景(动点、平移、旋转、折叠)-备战2024年中考数学重难题型(全国通用) 试卷 0 次下载
专题23 二次函数与几何图形综合题(与特殊四边形有关问题)-备战2024年中考数学重难题型(全国通用)
展开
这是一份专题23 二次函数与几何图形综合题(与特殊四边形有关问题)-备战2024年中考数学重难题型(全国通用),文件包含专题23二次函数与几何图形综合题与特殊四边形有关问题原卷版docx、专题23二次函数与几何图形综合题与特殊四边形有关问题解析版docx等2份试卷配套教学资源,其中试卷共100页, 欢迎下载使用。
1.(2022·四川眉山)在平面直角坐标系中,抛物线与轴交于点,(点在点的左侧),与轴交于点,且点的坐标为.
(1)求点的坐标;(2)如图1,若点是第二象限内抛物线上一动点,求点到直线距离的最大值;(3)如图2,若点是抛物线上一点,点是抛物线对称轴上一点,是否存在点使以,,,为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.
2.(2022·山东泰安)若二次函数的图象经过点,,其对称轴为直线,与x轴的另一交点为C.
(1)求二次函数的表达式;(2)若点M在直线上,且在第四象限,过点M作轴于点N.
①若点N在线段上,且,求点M的坐标;
②以为对角线作正方形(点P在右侧),当点P在抛物线上时,求点M的坐标.
3.(2022·湖南湘潭)已知抛物线.
(1)如图①,若抛物线图象与轴交于点,与轴交点.连接.
①求该抛物线所表示的二次函数表达式;
②若点是抛物线上一动点(与点不重合),过点作轴于点,与线段交于点.是否存在点使得点是线段的三等分点?若存在,请求出点的坐标;若不存在,请说明理由.
(2)如图②,直线与轴交于点,同时与抛物线交于点,以线段为边作菱形,使点落在轴的正半轴上,若该抛物线与线段没有交点,求的取值范围.
4.(2022·湖南省怀化市)如图一所示,在平面直角坐标中,抛物线y=ax2+2x+c经过点A(-1,0)、B(3,0),与y轴交于点C,顶点为点D.在线段CB上方的抛物线上有一动点P,过点P作PE⊥BC于点E,作PF∥AB交BC于点F.
(1)求抛物线和直线BC的函数表达式.
(2)当△PEF的周长为最大值时,求点P的坐标和△PEF的周长.
(3)若点G是抛物线上的一个动点,点M是抛物线对称轴上的一个动点,是否存在以C、B、G、M为顶点的四边形为平行四边形?若存在,求出点G的坐标,若不存在,请说明理由.
5.(2021·湖北恩施土家族苗族自治州·中考真题)如图,在平面直角坐标系中,四边形为正方形,点,在轴上,抛物线经过点,两点,且与直线交于另一点.
(1)求抛物线的解析式;
(2)为抛物线对称轴上一点,为平面直角坐标系中的一点,是否存在以点,,,为顶点的四边形是以为边的菱形.若存在,请求出点的坐标;若不存在,请说明理由;
(3)为轴上一点,过点作抛物线对称轴的垂线,垂足为,连接,.探究是否存在最小值.若存在,请求出这个最小值及点的坐标;若不存在,请说明理由.
6.(2021·重庆中考真题)如图,在平面直角坐标系中,抛物线与x轴交于点,,与y轴交于点C.
(1)求该抛物线的解析式;
(2)直线l为该抛物线的对称轴,点D与点C关于直线l对称,点P为直线AD下方抛物线上一动点,连接PA,PD,求面积的最大值;
(3)在(2)的条件下,将抛物线沿射线AD平移个单位,得到新的抛物线,点E为点P的对应点,点F为的对称轴上任意一点,在上确定一点G,使得以点D,E,F,G为顶点的四边形是平行四边形,写出所有符合条件的点G的坐标,并任选其中一个点的坐标,写出求解过程.
7.(2021·重庆中考真题)如图,在平面直角坐标系中,抛物线经过A(0,﹣1),B(4,1).直线AB交x轴于点C,P是直线AB下方抛物线上的一个动点.过点P作PD⊥AB,垂足为D,PE∥x轴,交AB于点E.
(1)求抛物线的函数表达式;
(2)当△PDE的周长取得最大值时,求点P的坐标和△PDE周长的最大值;
(3)把抛物线平移,使得新抛物线的顶点为(2)中求得的点P.M是新抛物线上一点,N是新抛物线对称轴上一点,直接写出所有使得以点A,B,M,N为顶点的四边形是平行四边形的点M的坐标,并把求其中一个点M的坐标的过程写出来.
8.(2021·四川中考真题)如图,在平面直角坐标系中,抛物线交轴于点和,交轴于点,抛物线的对称轴交轴于点,交抛物线于点.
(1)求抛物线的解析式;
(2)将线段绕着点沿顺时针方向旋转得到线段,旋转角为,连接,,求的最小值.
(3)为平面直角坐标系中一点,在抛物线上是否存在一点,使得以,,,为顶点的四边形为矩形?若存在,请直接写出点的横坐标;若不存在,请说明理由;
9.(2021·黑龙江中考真题)如图,抛物线与轴交于除原点和点,且其顶点关于轴的对称点坐标为.
(1)求抛物线的函数表达式;
(2)抛物线的对称轴上存在定点,使得抛物线上的任意一点到定点的距离与点到直线的距离总相等.
①证明上述结论并求出点的坐标;
②过点的直线与抛物线交于两点.证明:当直线绕点旋转时,是定值,并求出该定值;
(3)点是该抛物线上的一点,在轴,轴上分别找点,使四边形周长最小,直接写出的坐标.
10.(2021·山西中考真题)如图,抛物线与轴交于,两点(点在点的左侧),与轴交于点,连接,.
(1)求,,三点的坐标并直接写出直线,的函数表达式;
(2)点是直线下方抛物线上的一个动点,过点作的平行线,交线段于点.
①试探究:在直线上是否存在点,使得以点,,,为顶点的四边形为菱形,若存在,求出点的坐标;若不存在,请说明理由;
②设抛物线的对称轴与直线交于点,与直线交于点.当时,请直接写出的长.
11.(2021·甘肃中考真题)如图,在平面直角坐标系中,抛物线与坐标轴交于两点,直线交轴于点.点为直线下方抛物线上一动点,过点作轴的垂线,垂足为分别交直线于点.
(1)求抛物线的表达式;
(2)当,连接,求的面积;
(3)①是轴上一点,当四边形是矩形时,求点的坐标;
②在①的条件下,第一象限有一动点,满足,求周长的最小值.
12.(2021·广东中考真题)已知二次函数的图象过点,且对任意实数x,都有.
(1)求该二次函数的解析式;
(2)若(1)中二次函数图象与x轴的正半轴交点为A,与y轴交点为C;点M是(1)中二次函数图象上的动点.问在x轴上是否存在点N,使得以A、C、M、N为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N的坐标;若不存在,请说明理由.
13.(2021·四川中考真题)如图,抛物线与x轴交于A、B两点,与y轴交于C点,,.
(1)求抛物线的解析式;
(2)在第二象限内的抛物线上确定一点P,使四边形PBAC的面积最大.求出点P的坐标
(3)在(2)的结论下,点M为x轴上一动点,抛物线上是否存在一点Q.使点P、B、M、Q为顶点的四边形是平行四边形,若存在.请直接写出Q点的坐标;若不存在,请说明理由.
14.(2021·湖南中考真题)如图,在直角坐标系中,二次函数的图象与x轴相交于点和点,与y轴交于点C.
(1)求的值;
(2)点为抛物线上的动点,过P作x轴的垂线交直线于点Q.
①当时,求当P点到直线的距离最大时m的值;
②是否存在m,使得以点为顶点的四边形是菱形,若不存在,请说明理由;若存在,请求出m的值.
15.(2021·湖南中考真题)将抛物线向左平移1个单位,再向上平移4个单位后,得到抛物线.抛物线与轴交于点,,与轴交于点.已知,点是抛物线上的一个动点.
(1)求抛物线的表达式;
(2)如图1,点在线段上方的抛物线上运动(不与,重合),过点作,垂足为,交于点.作,垂足为,求的面积的最大值;
(3)如图2,点是抛物线的对称轴上的一个动点,在抛物线上,是否存在点,使得以点,,,为顶点的四边形是平行四边形?若存在,求出所有符合条件的点的坐标;若不存在,说明理由.
16.(2021·内蒙古)如图,抛物线交x轴于,两点,交y轴于点C,动点P在抛物线的对称轴上.
(1)求抛物线的解析式;
(2)当以P,B,C为顶点的三角形周长最小时,求点P的坐标及的周长;
(3)若点Q是平面直角坐标系内的任意一点,是否存在点Q,使得以A,C,P,Q为顶点的四边形是菱形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.
17.(2021·海南中考真题)已知抛物线与x轴交于两点,与y轴交于C点,且点A的坐标为、点C的坐标为.
(1)求该抛物线的函数表达式;
(2)如图1,若该抛物线的顶点为P,求的面积;
(3)如图2,有两动点在的边上运动,速度均为每秒1个单位长度,它们分别从点C和点B同时出发,点D沿折线按方向向终点B运动,点E沿线段按方向向终点C运动,当其中一个点到达终点时,另一个点也随之停止运动.设运动时间为t秒,请解答下列问题:
①当t为何值时,的面积等于;
②在点运动过程中,该抛物线上存在点F,使得依次连接得到的四边形是平行四边形,请直接写出所有符合条件的点F的坐标.
18.(2021·山东中考真题)如图,在平面直角坐标系中,已知抛物线交轴于,两点,交轴于点.
(1)求该抛物线的表达式;
(2)点为第四象限内抛物线上一点,连接,过点作交轴于点,连接,求面积的最大值及此时点的坐标;
(3)在(2)的条件下,将抛物线向右平移经过点时,得到新抛物线,点在新抛物线的对称轴上,在坐标平面内是否存在一点,使得以、、、为顶点的四边形为矩形,若存在,请直接写出点的坐标;若不存在,请说明理由.
参考:若点、,则线段的中点的坐标为.
19.(2021·黑龙江中考真题)综合与探究
如图,在平面直角坐标系中,抛物线与x轴交于点A、B,与y轴交于点C,连接BC,,对称轴为,点D为此抛物线的顶点.
(1)求抛物线的解析式;
(2)抛物线上C,D两点之间的距离是__________;
(3)点E是第一象限内抛物线上的动点,连接BE和CE.求面积的最大值;
(4)点P在抛物线对称轴上,平面内存在点Q,使以点B、C、P、Q为顶点的四边形为矩形,请直接写出点Q的坐标.
20.(2020•重庆)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与y轴交于点C,与x轴交于A,B两点(点A在点B的左侧),且A点坐标为(−2,0),直线BC的解析式为y=−23x+2.
(1)求抛物线的解析式;
(2)过点A作AD∥BC,交抛物线于点D,点E为直线BC上方抛物线上一动点,连接CE,EB,BD,DC.求四边形BECD面积的最大值及相应点E的坐标;
(3)将抛物线y=ax2+bx+2(a≠0)向左平移2个单位,已知点M为抛物线y=ax2+bx+2(a≠0)的对称轴上一动点,点N为平移后的抛物线上一动点.在(2)中,当四边形BECD的面积最大时,是否存在以A,E,M,N为顶点的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.
21.(2020•重庆)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c与直线AB相交于A,B两点,其中A(﹣3,﹣4),B(0,﹣1).
(1)求该抛物线的函数表达式;
(2)点P为直线AB下方抛物线上的任意一点,连接PA,PB,求△PAB面积的最大值;
(3)将该抛物线向右平移2个单位长度得到抛物线y=a1x2+b1x+c1(a1≠0),平移后的抛物线与原抛物线相交于点C,点D为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E,使以点B,C,D,E为顶点的四边形为菱形,若存在,请直接写出点E的坐标;若不存在,请说明理由.
22.(2020•黔东南州)已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,﹣3),顶点D的坐标为(1,﹣4).
(1)求抛物线的解析式.
(2)在y轴上找一点E,使得△EAC为等腰三角形,请直接写出点E的坐标.
(3)点P是x轴上的动点,点Q是抛物线上的动点,是否存在点P、Q,使得以点P、Q、B、D为顶点,BD为一边的四边形是平行四边形?若存在,请求出点P、Q坐标;若不存在,请说明理由.
相关试卷
这是一份专题24 二次函数与几何图形综合题(与圆有关问题)-备战2024年中考数学重难题型(全国通用),文件包含专题24二次函数与几何图形综合题与圆有关问题原卷版docx、专题24二次函数与几何图形综合题与圆有关问题解析版docx等2份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。
这是一份专题22 二次函数与几何图形综合题(与三角形全等或三角形相似有关问题)-备战2024年中考数学重难题型(全国通用),文件包含专题22二次函数与几何图形综合题与三角形全等或三角形相似有关问题原卷版docx、专题22二次函数与几何图形综合题与三角形全等或三角形相似有关问题解析版docx等2份试卷配套教学资源,其中试卷共112页, 欢迎下载使用。
这是一份专题21 二次函数与几何图形综合题(与特殊三角形问题)-备战2024年中考数学重难题型(全国通用),文件包含专题21二次函数与几何图形综合题与特殊三角形问题原卷版docx、专题21二次函数与几何图形综合题与特殊三角形问题解析版docx等2份试卷配套教学资源,其中试卷共94页, 欢迎下载使用。