所属成套资源:备战2024年中考数学重难题型(全国通用)
专题21 二次函数与几何图形综合题(与特殊三角形问题)-备战2024年中考数学重难题型(全国通用)
展开
这是一份专题21 二次函数与几何图形综合题(与特殊三角形问题)-备战2024年中考数学重难题型(全国通用),文件包含专题21二次函数与几何图形综合题与特殊三角形问题原卷版docx、专题21二次函数与几何图形综合题与特殊三角形问题解析版docx等2份试卷配套教学资源,其中试卷共94页, 欢迎下载使用。
(1)求线段AC的长;(2)若点Р为该抛物线对称轴上的一个动点,当时,求点P的坐标;
(3)若点M为该抛物线上的一个动点,当为直角三角形时,求点M的坐标.
2.(2022·四川省遂宁市)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(-1,0),点C的坐标为(0,-3).
(1)求抛物线的解析式;
(2)如图1,E为△ABC边AB上的一动点,F为BC边上的一动点,D点坐标为(0,-2),求△DEF周长的最小值;
(3)如图2,N为射线CB上的一点,M是抛物线上的一点,M、N均在第一象限内,B、N位于直线AM的同侧,若M到x轴的距离为d,△AMN面积为2d,当△AMN为等腰三角形时,求点N的坐标.
3.(2021·四川南充市·中考真题)如图,已知抛物线与x轴交于点A(1,0)和B,与y轴交于点C,对称轴为.
(1)求抛物线的解析式;
(2)如图1,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,连接OQ.当线段PQ长度最大时,判断四边形OCPQ的形状并说明理由.
(3)如图2,在(2)的条件下,D是OC的中点,过点Q的直线与抛物线交于点E,且.在y轴上是否存在点F,使得为等腰三角形?若存在,求点F的坐标;若不存在,请说明理由.
4.(2021·湖北荆州市·中考真题)已知:直线与轴、轴分别交于、两点,点为直线上一动点,连接,为锐角,在上方以为边作正方形,连接,设.
(1)如图1,当点在线段上时,判断与的位置关系,并说明理由;
(2)真接写出点的坐标(用含的式子表示);
(3)若,经过点的抛物线顶点为,且有,的面积为.当时,求抛物线的解析式.
5.(2021·四川广安市·中考真题)如图,在平面直角坐标系中,抛物线的图象与坐标轴相交于、、三点,其中点坐标为,点坐标为,连接、.动点从点出发,在线段上以每秒个单位长度向点做匀速运动;同时,动点从点出发,在线段上以每秒1个单位长度向点做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接,设运动时间为秒.
(1)求、的值;
(2)在、运动的过程中,当为何值时,四边形的面积最小,最小值为多少?
(3)在线段上方的抛物线上是否存在点,使是以点为直角顶点的等腰直角三角形?若存在,请求出点的坐标;若不存在,请说明理由.
6.(2021·四川自贡市·中考真题)如图,抛物线(其中)与x轴交于A、B两点,交y轴于点C.
(1)直接写出的度数和线段AB的长(用a表示);
(2)若点D为的外心,且与的周长之比为,求此抛物线的解析式;
(3)在(2)的前提下,试探究抛物线上是否存在一点P,使得?若存在,求出点P的坐标;若不存在,请说明理由.
7.(2021·四川中考真题)如图,在平面直角坐标系中,抛物线交轴于点和,交轴于点,抛物线的对称轴交轴于点,交抛物线于点.
(1)求抛物线的解析式;
(2)将线段绕着点沿顺时针方向旋转得到线段,旋转角为,连接,,求的最小值.
(3)为平面直角坐标系中一点,在抛物线上是否存在一点,使得以,,,为顶点的四边形为矩形?若存在,请直接写出点的横坐标;若不存在,请说明理由;
8.(2021·江苏中考真题)如图,抛物线与轴交于A(-1,0),B(4,0),与轴交于点C.连接AC,BC,点P在抛物线上运动.
(1)求抛物线的表达式;
(2)如图①,若点P在第四象限,点Q在PA的延长线上,当∠CAQ=∠CBA45°时,求点P的坐标;
(3)如图②,若点P在第一象限,直线AP交BC于点F,过点P作轴的垂线交BC于点H,当△PFH为等腰三角形时,求线段PH的长.
9.(2021·黑龙江中考真题)如图,抛物线与x轴交于点和点,与y轴交于点C,连接,与抛物线的对称轴交于点E,顶点为点D.
(1)求抛物线的解析式;
(2)点P是对称轴左侧抛物线上的一个动点,点Q在射线上,若以点P、Q、E为顶点的三角形与相似,请直接写出点P的坐标.
10.(2021·湖北中考真题)在平面直角坐标系中,抛物线与轴交于点和点,与轴交于点,顶点的坐标为.
(1)直接写出抛物线的解析式;
(2)如图1,若点在抛物线上且满足,求点的坐标;
(3)如图2,是直线上一个动点,过点作轴交抛物线于点,是直线上一个动点,当为等腰直角三角形时,直接写出此时点及其对应点的坐标
11.(2021·湖南中考真题)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁点”.例如……都是“雁点”.
(1)求函数图象上的“雁点”坐标;
(2)若抛物线上有且只有一个“雁点”E,该抛物线与x轴交于M、N两点(点M在点N的左侧).当时.
①求c的取值范围;
②求的度数;
(3)如图,抛物线与x轴交于A、B两点(点A在点B的左侧),P是抛物线上一点,连接,以点P为直角顶点,构造等腰,是否存在点P,使点C恰好为“雁点”?若存在,求出点P的坐标;若不存在,请说明理由.
12.(2021·湖南中考真题)如图所示,抛物线与x轴交于A、B两点,与y轴交于点C,且,,,抛物线的对称轴与直线BC交于点M,与x轴交于点N.
(1)求抛物线的解析式;
(2)若点P是对称轴上的一个动点,是否存在以P、C、M为顶点的三角形与相似?若存在,求出点P的坐标,若不存在,请说明理由.
(3)D为CO的中点,一个动点G从D点出发,先到达x轴上的点E,再走到抛物线对称轴上的点F,最后返回到点C.要使动点G走过的路程最短,请找出点E、F的位置,写出坐标,并求出最短路程.
(4)点Q是抛物线上位于x轴上方的一点,点R在x轴上,是否存在以点Q为直角顶点的等腰?若存在,求出点Q的坐标,若不存在,请说明理由.
13.(2021·内蒙古中考真题)如图,在平面直角坐标系中,抛物线经过坐标原点,与x轴正半轴交于点A,点是抛物线上一动点.
(1)如图1,当,,且时,
①求点M的坐标:
②若点在该抛物线上,连接OM,BM,C是线段BM上一动点(点C与点M,B不重合),过点C作,交x轴于点D,线段OD与MC是否相等?请说明理由;
(2)如图2,该抛物线的对称轴交x轴于点K,点在对称轴上,当,,且直线EM交x轴的负半轴于点F时,过点A作x轴的垂线,交直线EM于点N,G为y轴上一点,点G的坐标为,连接GF.若,求证:射线FE平分.
14.(2021·湖北中考真题)如图,直线与轴交于点,与轴交于点,点为线段的中点,点是线段上一动点(不与点、重合).
(1)请直接写出点、点、点的坐标;
(2)连接,在第一象限内将沿翻折得到,点的对应点为点.若,求线段的长;
(3)在(2)的条件下,设抛物线的顶点为点.
①若点在内部(不包括边),求的取值范围;
②在平面直角坐标系内是否存在点,使最大?若存在,请直接写出点的坐标;若不存在,请说明理由.
15.(2021·青海中考真题)如图,在平面直角坐标系中,直线与坐标轴交于两点,点在轴上,点在轴上,点的坐标为,抛物线经过点.
(1)求抛物线的解析式;
(2)根据图象写出不等式的解集;
(3)点是抛物线上的一动点,过点作直线的垂线段,垂足为点,当时,求P点的坐标.
16.(2021·湖南中考真题)如图,已知二次函数的图象经过点且与轴交于原点及点.
(1)求二次函数的表达式;
(2)求顶点的坐标及直线的表达式;
(3)判断的形状,试说明理由;
(4)若点为上的动点,且的半径为,一动点从点出发,以每秒2个单位长度的速度沿线段匀速运动到点,再以每秒1个单位长度的速度沿线段匀速运动到点后停止运动,求点的运动时间的最小值.
17.(2021·山东中考真题)如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,抛物线经过坐标原点和点,顶点为点.
(1)求抛物线的关系式及点的坐标;
(2)点是直线下方的抛物线上一动点,连接,,当的面积等于时,求点的坐标;
(3)将直线向下平移,得到过点的直线,且与轴负半轴交于点,取点,连接,求证:.
18.(2021·湖北中考真题)抛物线()与轴相交于点,且抛物线的对称轴为,为对称轴与轴的交点.
(1)求抛物线的解析式;
(2)在轴上方且平行于轴的直线与抛物线从左到右依次交于、两点,若是等腰直角三角形,求的面积;
(3)若是对称轴上一定点,是抛物线上的动点,求的最小值(用含的代数式表示).
19.(2020•枣庄)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.
(1)求抛物线的表达式;
(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?
(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.
20.(2020•泸州)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),C(0,4)三点.
(1)求该抛物线的解析式;
(2)经过点B的直线交y轴于点D,交线段AC于点E,若BD=5DE.
①求直线BD的解析式;
②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧,点R是直线BD上的动点,若△PQR是以点Q为直角顶点的等腰直角三角形,求点P的坐标.
相关试卷
这是一份专题24 二次函数与几何图形综合题(与圆有关问题)-备战2024年中考数学重难题型(全国通用),文件包含专题24二次函数与几何图形综合题与圆有关问题原卷版docx、专题24二次函数与几何图形综合题与圆有关问题解析版docx等2份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。
这是一份专题22 二次函数与几何图形综合题(与三角形全等或三角形相似有关问题)-备战2024年中考数学重难题型(全国通用),文件包含专题22二次函数与几何图形综合题与三角形全等或三角形相似有关问题原卷版docx、专题22二次函数与几何图形综合题与三角形全等或三角形相似有关问题解析版docx等2份试卷配套教学资源,其中试卷共112页, 欢迎下载使用。
这是一份专题23 二次函数与几何图形综合题(与特殊四边形有关问题)-备战2024年中考数学重难题型(全国通用),文件包含专题23二次函数与几何图形综合题与特殊四边形有关问题原卷版docx、专题23二次函数与几何图形综合题与特殊四边形有关问题解析版docx等2份试卷配套教学资源,其中试卷共100页, 欢迎下载使用。