所属成套资源:备战2024年中考数学重难题型(全国通用)
专题18 二次函数与几何图形综合题(与角度问题)-备战2024年中考数学重难题型(全国通用)
展开
这是一份专题18 二次函数与几何图形综合题(与角度问题)-备战2024年中考数学重难题型(全国通用),文件包含专题18二次函数与几何图形综合题与角度问题原卷版docx、专题18二次函数与几何图形综合题与角度问题解析版docx等2份试卷配套教学资源,其中试卷共60页, 欢迎下载使用。
2.(2022·四川省达州市)如图1,在平面直角坐标系中,已知二次函数y=ax2+bx+2的图象经过点A(-1,0),B(3,0),与y轴交于点C.
(1)求该二次函数的表达式;
(2)连接BC,在该二次函数图象上是否存在点P,使∠PCB=∠ABC?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)如图2,直线l为该二次函数图象的对称轴,交x轴于点E.若点Q为x轴上方二次函数图象上一动点,过点Q作直线AQ,BQ分别交直线l于点M,N,在点Q的运动过程中,EM+EN的值是否为定值?若是,请求出该定值;若不是,请说明理由.
3.(2021·江苏连云港市·中考真题)如图,抛物线与x轴交于点A、B,与y轴交于点C,已知.
(1)求m的值和直线对应的函数表达式;
(2)P为抛物线上一点,若,请直接写出点P的坐标;
(3)Q为抛物线上一点,若,求点Q的坐标.
4.(2021·四川自贡市·中考真题)如图,抛物线(其中)与x轴交于A、B两点,交y轴于点C.
(1)直接写出的度数和线段AB的长(用a表示);
(2)若点D为的外心,且与的周长之比为,求此抛物线的解析式;
(3)在(2)的前提下,试探究抛物线上是否存在一点P,使得?若存在,求出点P的坐标;若不存在,请说明理由.
5.(2021·辽宁中考真题)已知函数,记该函数图像为G.
(1)当时,
①已知在该函数图像上,求n的值;
②当时,求函数G的最大值;
(2)当时,作直线与x轴交于点P,与函数G交于点Q,若时,求m的值;
(3)当时,设图像与x轴交于点A,与y轴交与点B,过B做交直线与点C,设点A的横坐标为a,C点的纵坐标为c,若,求m的值.
6.(2021·江苏中考真题)如图,抛物线与轴交于A(-1,0),B(4,0),与轴交于点C.连接AC,BC,点P在抛物线上运动.
(1)求抛物线的表达式;
(2)如图①,若点P在第四象限,点Q在PA的延长线上,当∠CAQ=∠CBA45°时,求点P的坐标;
(3)如图②,若点P在第一象限,直线AP交BC于点F,过点P作轴的垂线交BC于点H,当△PFH为等腰三角形时,求线段PH的长.
7.(2021·湖北中考真题)在平面直角坐标系中,抛物线与轴交于点和点,与轴交于点,顶点的坐标为.
(1)直接写出抛物线的解析式;
(2)如图1,若点在抛物线上且满足,求点的坐标;
(3)如图2,是直线上一个动点,过点作轴交抛物线于点,是直线上一个动点,当为等腰直角三角形时,直接写出此时点及其对应点的坐标
8.(2021·湖南中考真题)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁点”.例如……都是“雁点”.
(1)求函数图象上的“雁点”坐标;
(2)若抛物线上有且只有一个“雁点”E,该抛物线与x轴交于M、N两点(点M在点N的左侧).当时.
①求c的取值范围;
②求的度数;
(3)如图,抛物线与x轴交于A、B两点(点A在点B的左侧),P是抛物线上一点,连接,以点P为直角顶点,构造等腰,是否存在点P,使点C恰好为“雁点”?若存在,求出点P的坐标;若不存在,请说明理由.
9.(2021·四川中考真题)如图,在平面直角坐标系中,已知抛物线经过点和点.
(1)求这条抛物线所对应的函数表达式;
(2)点为该抛物线上一点(不与点重合),直线将的面积分成2:1两部分,求点的坐标;
(3)点从点出发,以每秒1个单位的速度沿轴移动,运动时间为秒,当时,求的值.
10.(2021·内蒙古中考真题)如图,在平面直角坐标系中,抛物线经过坐标原点,与x轴正半轴交于点A,点是抛物线上一动点.
(1)如图1,当,,且时,
①求点M的坐标:
②若点在该抛物线上,连接OM,BM,C是线段BM上一动点(点C与点M,B不重合),过点C作,交x轴于点D,线段OD与MC是否相等?请说明理由;
(2)如图2,该抛物线的对称轴交x轴于点K,点在对称轴上,当,,且直线EM交x轴的负半轴于点F时,过点A作x轴的垂线,交直线EM于点N,G为y轴上一点,点G的坐标为,连接GF.若,求证:射线FE平分.
11.(2021·山东中考真题)如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,抛物线经过坐标原点和点,顶点为点.
(1)求抛物线的关系式及点的坐标;
(2)点是直线下方的抛物线上一动点,连接,,当的面积等于时,求点的坐标;
(3)将直线向下平移,得到过点的直线,且与轴负半轴交于点,取点,连接,求证:.
12.(2020•南充)已知二次函数图象过点A(﹣2,0),B(4,0),C(0,4).
(1)求二次函数的解析式.
(2)如图,当点P为AC的中点时,在线段PB上是否存在点M,使得∠BMC=90°?若存在,求出点M的坐标;若不存在,请说明理由.
(3)点K在抛物线上,点D为AB的中点,直线KD与直线BC的夹角为锐角θ,且tanθ=53,求点K的坐标.
相关试卷
这是一份专题24 二次函数与几何图形综合题(与圆有关问题)-备战2024年中考数学重难题型(全国通用),文件包含专题24二次函数与几何图形综合题与圆有关问题原卷版docx、专题24二次函数与几何图形综合题与圆有关问题解析版docx等2份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。
这是一份专题22 二次函数与几何图形综合题(与三角形全等或三角形相似有关问题)-备战2024年中考数学重难题型(全国通用),文件包含专题22二次函数与几何图形综合题与三角形全等或三角形相似有关问题原卷版docx、专题22二次函数与几何图形综合题与三角形全等或三角形相似有关问题解析版docx等2份试卷配套教学资源,其中试卷共112页, 欢迎下载使用。
这是一份专题23 二次函数与几何图形综合题(与特殊四边形有关问题)-备战2024年中考数学重难题型(全国通用),文件包含专题23二次函数与几何图形综合题与特殊四边形有关问题原卷版docx、专题23二次函数与几何图形综合题与特殊四边形有关问题解析版docx等2份试卷配套教学资源,其中试卷共100页, 欢迎下载使用。