所属成套资源:全套高考数学一轮复习课时分层作业含答案
高考数学一轮复习课时分层作业60事件的相互独立性、条件概率与全概率公式含答案
展开这是一份高考数学一轮复习课时分层作业60事件的相互独立性、条件概率与全概率公式含答案,文件包含高考数学一轮复习课时分层作业60事件的相互独立性条件概率与全概率公式含答案docx、高考数学一轮复习课时分层作业60参考答案docx等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。
一、选择题
1.从应届高中生中选拔飞行员,已知这批学生体型合格的概率为13,视力合格的概率为16,其他几项标准合格的概率为15,从中任选一名学生,则该生各项均合格的概率为(假设各项标准互不影响)( )
A.49 B.190
C.45 D.59
2.(多选)(2022·湖南永州三模)已知事件A与事件B为互斥事件,A是事件A的对立事件,B是事件B的对立事件,若PA=13,PB=16,则( )
A.PA=23 B.PA∪B=12
C.PA∩B=0 D.事件A与事件B不独立
3.(2023·河北保定模拟)为了提高出行效率,避免打车困难的情况,越来越多的人选择乘坐网约车.已知甲、乙、丙三人某天早上上班通过某平台打车的概率分别为12,13,25,且三人互不影响,那么甲、乙、丙3人中至少有2人通过该平台打车的概率为( )
A.13 B.25
C.310 D.1130
4.(2023·广东中山模拟)为了提升全民身体素质,学校十分重视学生体育锻炼.某校篮球运动员进行投篮练习,如果他前一球投进则后一球投进的概率为34;如果他前一球投不进则后一球投进的概率为14.若他第1球投进的概率为34,则他第2球投进的概率为( )
A.34 B.58
C.716 D.916
5.(2022·江苏苏锡常镇二模)随着北京冬奥会的举办,中国冰雪运动的参与人数有了突飞猛进的提升.某校为提升学生的综合素养,大力推广冰雪运动,开设了“陆地冰壶”“陆地冰球”“滑冰”“模拟滑雪”四类冰雪运动体验课程.甲、乙两名同学各自从中任意挑选两门课程学习,设事件A=“甲、乙两人所选课程恰有一门相同”,事件B=“甲、乙两人所选课程完全不同”,事件C=“甲、乙两人均未选择陆地冰壶课程”,则( )
A.A与B为对立事件 B.A与C互斥
C.A与C相互独立 D.B与C相互独立
6.(多选)(2022·湖南株洲一模)甲罐中有5个红球,5个白球,乙罐中有3个红球,7个白球.先从甲罐中随机取出一球放入乙罐,再从乙罐中随机取出一球.A1表示事件“从甲罐取出的球是红球”,A2表示事件“从甲罐取出的球是白球”,B表示事件“从乙罐取出的球是红球”.则下列结论正确的是( )
A.A1、A2为对立事件
B.P(B|A1)=411
C.PB=310
D.P(B|A1)+P(B|A2)=1
二、填空题
7.为促进小区人员对垃圾分类进行深入了解,某小区举行了“垃圾分类你提问我知道”对抗竞赛活动.活动规则:对抗双方轮换提问,答对得1分,答错对手得1分,先多得2分者获胜.若甲、乙两人进行对抗,且甲提问并获胜的概率为0.5,甲答题并获胜的概率为0.4,则在甲先提问的情况下,甲以3∶1获胜的概率为________.
8.某学校有A,B两家餐厅,甲同学第1天午餐时随机地选择一家餐厅用餐.如果第1天去A餐厅,那么第2天去A餐厅的概率为0.6;如果第1天去B餐厅,那么第2天去A餐厅的概率为0.8.则甲同学第2天去A餐厅用餐的概率为________.
9.三个元件T1,T2,T3正常工作的概率分别为12,34,34,将元件T2,T3并联后再和元件T1串联接入电路,如图所示,则此电路不发生故障的概率为________.
三、解答题
10.(2022·湖北二模)某企业使用新技术对某款芯片进行试生产,在试产初期,该款芯片的生产有四道工序,前三道工序的生产互不影响,第四道是检测评估工序,包括智能自动检测与人工抽检.已知该款芯片在生产中,前三道工序的次品率分别为P1=110,P2=19,P3=18.
(1)求该款芯片生产在进入第四道工序前的次品率;
(2)如果第四道工序中智能自动检测为次品的芯片会被自动淘汰,合格的芯片进入流水线并由工人进行人工抽查检验.在芯片智能自动检测显示合格率为90%的条件下,求工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率.
11.(2023·重庆模拟)冰壶被喻为冰上的“国际象棋”,是以团队为单位在冰上进行的投掷性竞赛项目,每场比赛共10局,在每局比赛中,每个团队由多名运动员组成,轮流掷壶、刷冰、指挥.两边队员交替掷壶,可击打本方和对手冰壶,以最终离得分区圆心最近的一方冰壶数量多少计算得分,另外一方记零分,以十局总得分最高的一方获胜.冰壶运动考验参与者的体能与脑力,展现动静之美,取舍之智慧.同时由于冰壶的击打规则,后投掷一方有优势,因此前一局的得分方将作为后一局的先手掷壶.已知甲、乙两队参加冰壶比赛,在某局中若甲方先手掷壶,则该局甲方得分概率为25;若甲方后手掷壶,则该局甲方得分概率为23,每局比赛不考虑平局.在该场比赛中,前面已经比赛了六局,双方各有三局得分,其中第六局乙方得分.
(1)求第七局、第八局均为甲方得分的概率;
(2)求当十局比完,甲方的得分局多于乙方的概率.
12.(多选)(2023·湖北宜昌模拟)一个笼子里关着10只猫,其中有4只黑猫、6只白猫,把笼子打开一个小口,使得每次只能钻出1只猫,猫争先恐后地往外钻,如果10只猫都钻出了笼子,事件Ak表示“第k只出笼的猫是黑猫”,k=1,2,…,10,则( )
A.PA1A2=23 B.PA1+A2=23
C.PA2A1=13 D.PA10A2=13
13.(2023·重庆模拟)记A为事件A的对立事件,且PA=12,PAB=13,PB=34,则P(A∪B)=________.
14.有3台车床加工同一型号的零件,第1台加工的次品率为6%,第2,3台加工的次品率均为5%;加工出来的零件混放在一起,且第1,2,3台车床加工的零件数分别占总数的25%,30%,45%.现从加工出来的零件中任取一个零件,则取到的零件是次品的概率为________,取到的零件是次品,且是第3台车床加工的概率为________.
15.甲、乙、丙三人相互做传球训练,第一次由甲将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人.
(1)求2次传球后球在甲手中的概率p2,3次传球后球在甲手中的概率p3;
(2)求n次传球后球在甲手中的概率.
相关试卷
这是一份52事件的相互独立性、条件概率与全概率公式 专项训练—2024届艺术班高考数学一轮复习(文字版 含答案),文件包含52事件的相互独立性条件概率与全概率公式专项训练2024届艺术班高考数学一轮复习文字版答案docx、52事件的相互独立性条件概率与全概率公式专项训练2024届艺术班高考数学一轮复习文字版含答案docx等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。
这是一份2024年高考数学第一轮复习专题训练第十章 §10.5 事件的相互独立性与条件概率、全概率公式,共5页。试卷主要包含了了解两个事件相互独立的含义,8两,诱发某种疾病的频率为0等内容,欢迎下载使用。
这是一份(新高考)高考数学一轮复习讲练测第10章§10.5事件的相互独立性与条件概率、全概率公式(含解析),共14页。试卷主要包含了了解两个事件相互独立的含义,8两,诱发某种疾病的频率为0等内容,欢迎下载使用。