|试卷下载
终身会员
搜索
    上传资料 赚现金
    四川省眉山市彭山区第一中学2023-2024学年高二上学期12月月考数学试题1
    立即下载
    加入资料篮
    四川省眉山市彭山区第一中学2023-2024学年高二上学期12月月考数学试题101
    四川省眉山市彭山区第一中学2023-2024学年高二上学期12月月考数学试题102
    四川省眉山市彭山区第一中学2023-2024学年高二上学期12月月考数学试题103
    还剩8页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    四川省眉山市彭山区第一中学2023-2024学年高二上学期12月月考数学试题1

    展开
    这是一份四川省眉山市彭山区第一中学2023-2024学年高二上学期12月月考数学试题1,共11页。试卷主要包含了请将所有答案正确填写在答题卡上,已知直线过点和点Q,已知椭圆C等内容,欢迎下载使用。

    考试时间120分钟;考试总分:150分钟;命题人:高二数学组
    注意事项:
    1.答题前填写好自己的姓名、班级、考号等信息
    2.请将所有答案正确填写在答题卡上。
    第I卷 选择题(60分)
    一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
    1.直线倾斜角是( )
    A.B.C.D.
    2.向量,,若,则( )
    A.,B.,
    C.,D.
    3.圆与圆的公共弦所在直线与两坐标轴所围成的三角形面积为( )
    A.B.C.D.1
    4.已知双曲线的离心率为,且双曲线上的点到焦点的最近距离为2,则双曲线的方程为( )
    A.B.
    C.D.
    5.若连续抛两次骰子得到的点数分别是,,则点在直线上的概率是( )
    A.B.C.D.
    6.已知直线过点和点Q(2,2,0),则点到的距离为( )
    A.3B.
    C.D.
    7.已知椭圆C:,O为椭圆的对称中心,F为椭圆的一个焦点,P为椭圆上一点,轴,PF与椭圆的另一个交点为点Q,为等腰直角三角形,则椭圆的离心率为( )
    A.B.C.D.
    8.埃及金字塔是世界古代建筑奇迹之一,它的形状可视为一个正四棱锥,若金字塔的高为3,,点E满足,则点D到平面的距离为( )

    A.B.C.D.
    二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.
    9.已知甲罐中有三个相同的小球,标号为1,2,3;乙罐中有四个相同的小球,标号为1,2,3,4,现从甲罐、乙罐中分别随机抽取1个小球,记事件“抽取的两个小球标号之和小于5”,事件“抽取的两个小球标号之积为奇数”,则下列说法正确的是( )
    A.事件发生的概率为B.事件发生的概率为
    C.事件发生的概率为D.事件发生的概率为
    10.直线与圆相切,且在轴、轴上的截距相等,则直线的方程可能是( )
    A.B.C.D.
    11.已知A,B两点的距离为定值4,平面内一动点,记的内角A,B,C的对边分别为a,b,c,面积为,下面说法正确的是()
    A.若,则最大值为2
    B.若,则最大值为
    C.若,则最大值为
    D.若,则最大值为1
    12.已知正方体的棱长为2,,点在底面上运动.则下列说法正确的是( )
    A.存在点,使得
    B.若//平面时,长度的最小值是
    C.若与平面所成角为时,点的轨迹长度为
    D.当点为底面的中心时,三棱锥的外接球的表面积为
    第II卷 非选择题
    三、填空题:本题共4小题,每小题5分,共20分.
    13.一个不透明的盒子中装有若干个红球和5个黑球,这些球除颜色外均相同.经多次摸球试验后发现,摸到黑球的频率稳定在0.25左右,则盒子中红球的个数约为 .
    已知双曲线上一点到双曲线的一个焦点的距离为3,则到另一个焦点的距离为 .
    设,过定点的动直线和过定点的动直线交于点,则的最大值为 .
    16.已知椭圆的左、右焦点分别为,,左顶点为A,离心率为,经过的直线与该椭圆相交于P,Q两点(其中点在P第一象限),且,若的周长为,则该椭圆的标准方程为 .
    四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
    17.小宁某天乘火车从重庆到上海去办事,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:
    (1)这三列火车恰好有两列正点到达的概率;
    (2)这三列火车至少有一列正点到达的概率.
    18.在平面直角坐标系中,圆经过点和点,且圆心在直线上.
    (1)求圆的标准方程;
    (2)若直线被圆截得弦长为,求实数的值.
    19.已知椭圆的离心率为,且短轴长为.
    (1)求的方程;
    (2)若直线与交于两点,且弦的中点为,求的一般式方程.
    20.已知四棱锥的底面为等腰梯形,,,,平面.
    (1)求证:;
    (2)若四棱锥的体积为2,求平面与平面夹角的余弦值.
    21.己知双曲线的一条渐近线为,且双曲线的虚轴长为.
    (1)求双曲线的方程;
    (2)记为坐标原点,过点的直线与双曲线相交于不同的两点、,若的面积为,求直线的方程.
    22.已知椭圆的方程为,点为长轴的右端点.为椭圆的短轴的端点.直线与直线的斜率满足:.
    (1)求椭圆的标准方程;
    (2)若直线与圆相切,且与椭圆相交于两点,求证:以线段为直径的圆恒过原点.
    彭山一中高2025届高二上学期12月月考
    数学参考答案:
    1.C 2.B 3.A 4.B 5.C 6.D 7.A
    【详解】由题意可知椭圆的焦点在轴,不妨设,,
    因为点在椭圆上,
    所以,解得,所以,
    又为等腰直角三角形,所以,
    即,即,所以,
    解得或(舍.
    8.D
    【详解】如图,

    连接,设与相交于点O,连接,
    因为金字塔可视为一个正四棱锥,
    故以点O为坐标原点,所在直线分别为x,y,z轴,建立空间直角坐标系,
    又由题意可得,,
    所以,
    所以,,,,,,
    不妨设,又因为,所以,
    即,解得,即,
    ,,,
    设平面AEC的法向量为,则,,
    即,取,得,
    所以点D到平面AEC的距离.
    9.AC
    【详解】从甲罐、乙罐中分别随机抽取1个小球,共有12个基本事件,如下:

    抽取的两个小球标号之和小于5的有:,共6个
    抽出的两个小球标号之积为奇数的有:,共4个,
    所以,故A正确;
    事件包含的基本事件有:,共7个,
    所以,故B错误,
    事件包含的基本事件有:,共3个,
    所以,故C正确,D错误;
    10.ACD
    【详解】圆的圆心坐标为,半径,
    依题意直线的斜率存在,
    若直线过坐标原点,设直线为,即,则,解得,
    所以直线的方程为或;
    若直线不过坐标原点,设直线为(),即,
    则,解得(舍去)或,
    所以直线的方程为,
    综上可得直线的方程为或或.
    11.BC
    【详解】如图,以线段的中点为原点建立空间直角坐标系,
    则,设,
    对于A,,即,
    化简可得点C的轨迹方程,故,
    所以三角形ABC的面积,
    即C点为时,三角形ABC面积最大,故A错误;
    对于B,由题意可得,
    化简可得点C的轨迹方程,
    故,
    所以,即C点为时,
    三角形ABC面积最大,故B正确;
    对于C,由知,
    动点C的轨迹为以A,B为焦点的椭圆(除去长轴上的两个顶点),
    则,故
    椭圆方程为,故,
    三角形ABC的面积,
    即当C运动到短轴端点时,三角形面积最大,故C正确;
    对于D,由题意,
    化简可得C的轨迹方程,故,
    三角形ABC的面积,
    即当C运动到短轴端点时,三角形ABC的面积的最大值为,故D错误.
    故选:BC
    12.ABD
    【详解】对于A选项,作关于平面的对称点,
    则,且,
    当点与点A重合时,则,
    所以存在满足题意,故A选项正确;

    对于B选项,在上取,在上取,连接,
    则可得平面∥平面,即当在上运动时,∥平面,
    长度的最小值是即为点到直线的距离,
    根据平行的性质可知:点到直线的距离即为点到直线的距离,
    所以 ,故B选项正确;

    对于C选项:因为平面,所以与平面所成角为,
    则,解得,
    所以点的轨迹是以A为圆心,半径的圆弧,长度为,故C选项错误;

    对D选项,以为原点,,,分别为轴,轴,轴建立如图所示的空间直角坐标系,
    可知的外接圆圆心的为(利用中垂线可得),
    所以球心为,,,,
    所以,解得,
    可得,
    所以,D选项正确,

    13.15
    14.9
    15.
    16.
    【详解】由椭圆的离心率为,可得
    因为,所以,
    又因为,因此的周长与的周长之比为,
    因为的周长为,所以的周长为10,
    由椭圆的定义,可得,
    结合,解得,于是,
    故椭圆的标准方程为.
    故答案为:.

    17.【详解】
    解:用A,B,C分别表示这三列火车正点到达的事件.
    则P(A)=0.8,P(B)=0.7,P(C)=0.9,所以P()=0.2,P()=0.3,P()=0.1.
    (1)由题意得A,B,C之间互相独立,所以恰好有两列正点到达的概率为
    P1=P()+P()+P()=P()P(B)P(C)+P(A)P()P(C)+P(A)P(B)P()
    =0.2×0.7×0.9+0.8×0.3×0.9+0.8×0.7×0.1=0.398.
    (2)三列火车至少有一列正点到达的概率为
    P2=1-P()=1-P()P()P()=1-0.2×0.3×0.1=0.994.
    18.【详解】(1)因为,的中点为,且直线的斜率,
    则线段的垂直平分线所在直线的方程为,
    联立方程,解得,
    即圆心,,
    所以,圆的方程为.
    (2)因为直线被曲线截得弦长为,
    则圆心到直线的距离,
    由点到直线的距离公式可得,解得.
    19.【详解】(1)由题意可得椭圆中,
    又因为,解得,,
    所以椭圆的方程为.
    (2)设,,则,
    两式相减,得,
    又根据题意带入可得,
    所以的斜率,
    故的方程为,即.

    20.【详解】(1)∵平面,平面,
    ∴,
    过点作,由为等腰梯形,,
    故,
    所以,即,即,
    平面,
    ∴平面,平面,
    故.
    (2)方法一:,
    ∵,

    ∴.
    如图,建立空间直角坐标系,
    ,,,,
    ,
    设平面法向量为,
    则,,
    取,得
    同理,设面法向量为,则
    ,,
    取,得,
    由题意,.
    设平面与平面的夹角为,则,
    21.【详解】(1)解:由题意可得,可得,
    因此,双曲线的方程为.
    (2)解:若直线与轴重合,则直线与双曲线没有交点,不合乎题意,
    所以,直线的斜率存在,设直线的方程为,设点、,
    联立可得,
    由题意可得,解得,
    由韦达定理可得,,
    则,
    ,解得,合乎题意,
    所以,直线的方程为或.
    22.【详解】解:(1),,
    由,即得,
    所以
    即椭圆的标准方程为:
    (2)设
    由得:


    又与圆C相切,所以即
    所以

    所以,,即
    所以,以线段为直径的圆经过原点.
    【点睛】圆锥曲线中定点问题的常见解法
    (1)假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点;
    (2)从特殊位置入手,找出定点,再证明该点符合题意.
    相关试卷

    2023-2024学年四川省眉山市彭山区第一中学高二上学期12月月考数学试题含答案: 这是一份2023-2024学年四川省眉山市彭山区第一中学高二上学期12月月考数学试题含答案,共20页。试卷主要包含了单选题,多选题,填空题,解答题,证明题等内容,欢迎下载使用。

    2023-2024学年四川省眉山市彭山区第一中学高一上学期12月月考数学试题含答案: 这是一份2023-2024学年四川省眉山市彭山区第一中学高一上学期12月月考数学试题含答案,共13页。试卷主要包含了单选题,多选题,填空题,解答题,证明题,应用题等内容,欢迎下载使用。

    四川省眉山市彭山区第一中学2023-2024学年高二上学期12月月考数学试题: 这是一份四川省眉山市彭山区第一中学2023-2024学年高二上学期12月月考数学试题,共10页。试卷主要包含了请将所有答案正确填写在答题卡上等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map