所属成套资源:2024年高考数学第一轮复习专题训练(附单独答案解析)
2024年数学高考大一轮复习第十二章 §12.4 不等式的证明(附答单独案解析)
展开
这是一份2024年数学高考大一轮复习第十二章 §12.4 不等式的证明(附答单独案解析),共6页。
§12.4 不等式的证明考试要求 1.通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法、反证法与放缩法.2.掌握柯西不等式的用法.知识梳理1.比较法(1)作差比较法已知a>b⇔a-b>0,a<b⇔a-b<0,因此要证明a>b,只要证明________________即可,这种方法称为作差比较法.(2)作商比较法由a>b>0⇔>1且a>0,b>0,因此当a>0,b>0时,要证明a>b,只要证明__________即可,这种方法称为作商比较法.2.综合法从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫做综合法,又叫顺推证法或由因导果法.3.分析法从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证明方法叫做分析法,即“执果索因”的方法.4.反证法先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立.5.放缩法证明不等式时,通过把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的.6.柯西不等式(1)二维形式的柯西不等式:设a,b,c,d都是实数,则(a2+b2)(c2+d2)≥______________,当且仅当________________时,等号成立.(2)一般形式的柯西不等式:设a1,a2,a3,…,an,b1,b2,b3,…,bn是实数,则(a+a+…+a)(b+b+…+b)≥(a1b1+a2b2+…+anbn)2,当且仅当bi=0(i=1,2,…,n)或存在一个实数k,使得ai=kbi(i=1,2,…,n)时,等号成立.(3)柯西不等式的向量形式:设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k,使α=kβ时,等号成立.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)当a≥0,b≥0时,≥.( )(2)用反证法证明命题“a,b,c全为0”的假设为“a,b,c全不为0”.( )(3)若实数x,y满足不等式xy>1,x+y>-2,则x>0,y>0.( )(4)若m=a+2b,n=a+b2+1,则n≥m.( )教材改编题1.若a>b>1,x=a+,y=b+,则x与y的大小关系是( )A.x>y B.x<y C.x≥y D.x≤y2.已知a,b∈R+,a+b=2,则+的最小值为( )A.1 B.2 C.4 D.83.函数f(x)=3+的最大值为________.题型一 综合法与分析法证明不等式例1 已知f(x)=|x+1|+|x-1|,不等式f(x)<4的解集为M.(1)求M;(2)当a,b∈M时,证明:2|a+b|<|4+ab|.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 思维升华 用综合法证明不等式是“由因导果”,用分析法证明不等式是“执果索因”,它们是两种思路截然相反的证明方法.综合法往往是分析法的逆过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与综合法相互转化,互相渗透,互为前提,充分利用这一辩证关系,可以增加解题思路,开阔视野.跟踪训练1 已知a,b,c为正数,且满足a+b+c=1.证明:(1)1-a≤;________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________(2)2a2+b2+c2≥.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 题型二 放缩法证明不等式例2 (1)设a>0,|x-1|<,|y-2|<,求证:|2x+y-4|<a.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________(2)设n是正整数,求证:≤++…+<1.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思维升华 常用的放缩方法有(1)①舍去或加上一些项,如2+>2;②将分子或分母放大(缩小),如<,>,<,>(k∈N*,k>1)等.(2)利用函数的单调性.(3)真分数性质“若0<a<b,m>0,则<”.跟踪训练2 求证:+++…+<2.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________题型三 柯西不等式例3 (2022·全国甲卷)已知a,b,c均为正数,且a2+b2+4c2=3,证明:(1)a+b+2c≤3;(2)若b=2c,则+≥3.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思维升华 (1)利用柯西不等式证明不等式,先使用拆项重组、添项等方法构造符合柯西不等式的形式及条件,再使用柯西不等式解决有关问题.(2)利用柯西不等式求最值,实质上就是利用柯西不等式进行放缩,放缩不当则等号可能不成立,因此,一定不能忘记检验等号成立的条件.跟踪训练3 (2022·咸阳模拟)已知函数f(x)=|x+2|+2|x-1|(x∈R)的最小值为m.(1)求m的值;(2)设a,b,c均为正数,2a+2b+c=m,求a2+b2+c2的最小值.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
相关试卷
这是一份2024年数学高考大一轮复习第十二章 §12.4 不等式的证明(附答单独案解析),共4页。
这是一份2024年数学高考大一轮复习第十二章 §12.3 绝对值不等式(附答单独案解析),共3页。
这是一份2024年数学高考大一轮复习第十二章 §12.2 参数方程(附答单独案解析),共4页。