终身会员
搜索
    上传资料 赚现金

    2024年数学高考大一轮复习第十二章 §12.4 不等式的证明(附答单独案解析) 试卷

    立即下载
    加入资料篮
    2024年数学高考大一轮复习第十二章 §12.4 不等式的证明(附答单独案解析)第1页
    2024年数学高考大一轮复习第十二章 §12.4 不等式的证明(附答单独案解析)第2页
    2024年数学高考大一轮复习第十二章 §12.4 不等式的证明(附答单独案解析)第3页
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年数学高考大一轮复习第十二章 §12.4 不等式的证明(附答单独案解析)

    展开

    这是一份2024年数学高考大一轮复习第十二章 §12.4 不等式的证明(附答单独案解析),共6页。
    §12.4 不等式的证明考试要求 1.通过一些简单问题了解证明不等式的基本方法比较法综合法分析法反证法与放缩法.2.掌握柯西不等式的用法知识梳理1比较法(1)作差比较法已知a>bab>0a<bab<0因此要证明a>b只要证明________________即可这种方法称为作差比较法(2)作商比较法a>b>0>1a>0b>0因此当a>0b>0要证明a>b只要证明__________即可这种方法称为作商比较法2综合法从已知条件出发利用定义公理定理性质等经过一系列的推理论证而得出命题成立这种证明方法叫做综合法又叫顺推证法或由因导果法3分析法从要证的结论出发逐步寻求使它成立的充分条件直至所需条件为已知条件或一个明显成立的事实(定义公理或已证明的定理性质等)从而得出要证的命题成立这种证明方法叫做分析法执果索因的方法4反证法先假设要证的命题不成立以此为出发点结合已知条件应用公理定义定理性质等进行正确的推理得到和命题的条件(或已证明的定理性质明显成立的事实等)矛盾的结论以说明假设不正确从而证明原命题成立5放缩法证明不等式时通过把不等式中的某些部分的值放大或缩小简化不等式从而达到证明的目的6柯西不等式(1)二维形式的柯西不等式abcd都是实数(a2b2)(c2d2)______________当且仅当________________等号成立(2)一般形式的柯西不等式a1a2a3anb1b2b3bn是实数(aaa)(bbb)(a1b1a2b2anbn)2当且仅当bi0(i1,2n)或存在一个实k使得aikbi(i1,2n)等号成立(3)柯西不等式的向量形式αβ是两个向量|α·β||α||β|当且仅当β是零向量或存在实数k使αkβ等号成立思考辨析判断下列结论是否正确(请在括号中打“√”“×”)(1)a0b0时,.(  )(2)用反证法证明命题abc全为0的假设为abc全不为0(  )(3)若实数xy满足不等式xy>1xy>2,则x>0y>0.(  )(4)ma2bnab21,则nm.(  )教材改编题1a>b>1xaybxy的大小关系是(  )Ax>y   Bx<y  Cxy   Dxy2已知abRab2的最小值为(  )A1  B2  C4  D83函数f(x)3的最大值为________题型一 综合法与分析法证明不等式1 已知f(x)|x1||x1|不等式f(x)<4的解集为M.(1)M(2)abM证明2|ab|<|4ab|.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 思维升华 用综合法证明不等式是由因导果,用分析法证明不等式是执果索因,它们是两种思路截然相反的证明方法综合法往往是分析法的逆过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与综合法相互转化,互相渗透,互为前提,充分利用这一辩证关系,可以增加解题思路,开阔视野跟踪训练1 已知abc为正数且满足abc1.证明(1)1a________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________(2)2a2b2c2.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 题型二 放缩法证明不等式2 (1)a>0|x1|<|y2|<求证|2xy4|<a.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________(2)n是正整数求证<1.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思维升华 常用的放缩方法有(1)舍去或加上一些项,如2>2将分子或分母放大(缩小),如<><>(kN*k>1)(2)利用函数的单调性(3)真分数性质0<a<bm>0,则<跟踪训练2 求证<2.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________题型三 柯西不等式3 (2022·全国甲卷)已知abc均为正数a2b24c23证明(1)ab2c3(2)b2c3.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思维升华 (1)利用柯西不等式证明不等式,先使用拆项重组、添项等方法构造符合柯西不等式的形式及条件,再使用柯西不等式解决有关问题(2)利用柯西不等式求最值,实质上就是利用柯西不等式进行放缩,放缩不当则等号可能不成立,因此,一定不能忘记检验等号成立的条件跟踪训练3 (2022·咸阳模拟)已知函数f(x)|x2|2|x1|(xR)的最小值为m.(1)m的值(2)abc均为正数2a2bcma2b2c2的最小值________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

    相关试卷

    2024年数学高考大一轮复习第十二章 §12.4 不等式的证明(附答单独案解析):

    这是一份2024年数学高考大一轮复习第十二章 §12.4 不等式的证明(附答单独案解析),共4页。

    2024年数学高考大一轮复习第十二章 §12.3 绝对值不等式(附答单独案解析):

    这是一份2024年数学高考大一轮复习第十二章 §12.3 绝对值不等式(附答单独案解析),共3页。

    2024年数学高考大一轮复习第十二章 §12.2 参数方程(附答单独案解析):

    这是一份2024年数学高考大一轮复习第十二章 §12.2 参数方程(附答单独案解析),共4页。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map