|试卷下载
终身会员
搜索
    上传资料 赚现金
    高考数学大一轮复习第十章 算法、统计与统计案例、概率 试卷
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      高考数学第一轮复习概率与统计热点问题.doc
    • 高考数学第一轮复习第1节 算法与程序框图.doc
    • 高考数学第一轮复习第4节 变量间的相关关系与统计案例.doc
    • 高考数学第一轮复习第3节 用样本估计总体.doc
    • 高考数学第一轮复习第6节 古典概型与几何概型.doc
    • 高考数学第一轮复习第2节 随机抽样.doc
    • 高考数学第一轮复习第5节 随机事件的概率.doc
    高考数学大一轮复习第十章 算法、统计与统计案例、概率 试卷01
    高考数学大一轮复习第十章 算法、统计与统计案例、概率 试卷02
    高考数学大一轮复习第十章 算法、统计与统计案例、概率 试卷03
    高考数学大一轮复习第十章 算法、统计与统计案例、概率 试卷01
    高考数学大一轮复习第十章 算法、统计与统计案例、概率 试卷02
    高考数学大一轮复习第十章 算法、统计与统计案例、概率 试卷03
    高考数学大一轮复习第十章 算法、统计与统计案例、概率 试卷01
    高考数学大一轮复习第十章 算法、统计与统计案例、概率 试卷02
    高考数学大一轮复习第十章 算法、统计与统计案例、概率 试卷03
    高考数学大一轮复习第十章 算法、统计与统计案例、概率 试卷01
    高考数学大一轮复习第十章 算法、统计与统计案例、概率 试卷02
    高考数学大一轮复习第十章 算法、统计与统计案例、概率 试卷03
    高考数学大一轮复习第十章 算法、统计与统计案例、概率 试卷01
    高考数学大一轮复习第十章 算法、统计与统计案例、概率 试卷02
    高考数学大一轮复习第十章 算法、统计与统计案例、概率 试卷03
    高考数学大一轮复习第十章 算法、统计与统计案例、概率 试卷01
    高考数学大一轮复习第十章 算法、统计与统计案例、概率 试卷02
    高考数学大一轮复习第十章 算法、统计与统计案例、概率 试卷03
    高考数学大一轮复习第十章 算法、统计与统计案例、概率 试卷01
    高考数学大一轮复习第十章 算法、统计与统计案例、概率 试卷02
    高考数学大一轮复习第十章 算法、统计与统计案例、概率 试卷03
    还剩10页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学大一轮复习第十章 算法、统计与统计案例、概率

    展开
    这是一份高考数学大一轮复习第十章 算法、统计与统计案例、概率,文件包含高考数学第一轮复习概率与统计热点问题doc、高考数学第一轮复习第1节算法与程序框图doc、高考数学第一轮复习第4节变量间的相关关系与统计案例doc、高考数学第一轮复习第3节用样本估计总体doc、高考数学第一轮复习第6节古典概型与几何概型doc、高考数学第一轮复习第2节随机抽样doc、高考数学第一轮复习第5节随机事件的概率doc等7份试卷配套教学资源,其中试卷共107页, 欢迎下载使用。

    第5节 随机事件的概率
    考纲要求 1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别;2.了解两个互斥事件的概率加法公式.

    知识梳理
    1.概率与频率
    (1)频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率.
    (2)概率:对于给定的随机事件A,由于事件A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),因此可以用频率fn(A)来估计概率P(A).
    2.事件的关系与运算

    定义
    符号表示
    包含关系
    如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)
    B⊇A(或A⊆B)
    相等关系
    若B⊇A且A⊇B
    A=B
    并事件(和事件)
    若某事件发生当且仅当事件A发生或事件B发生,称此事件为事件A与事件B的并事件(或和事件)
    A∪B(或A+B)
    交事件(积事件)
    若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)
    A∩B(或AB)
    互斥事件
    若A∩B为不可能事件,则称事件A与事件B互斥
    A∩B=∅
    对立事件
    若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件
    A∩B=∅
    P(A∪B)=1
    3.概率的几个基本性质
    (1)概率的取值范围:0≤P(A)≤1.
    (2)必然事件的概率P(E)=1.
    (3)不可能事件的概率P(F)=0.
    (4)互斥事件概率的加法公式
    ①如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).
    ②若事件B与事件A互为对立事件,则P(A)=1-P(B).

    1.从集合的角度理解互斥事件和对立事件
    (1)几个事件彼此互斥,是指由各个事件所含的结果组成的集合的交集为空集.
    (2)事件A的对立事件所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集.
    2.概率加法公式的推广
    当一个事件包含多个结果且各个结果彼此互斥时, 要用到概率加法公式的推广,即
    P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An).
    诊断自测

    1.判断下列结论正误(在括号内打“√”或“×”)
    (1)事件发生的频率与概率是相同的.(  )
    (2)在大量的重复实验中,概率是频率的稳定值.(  )
    (3)若随机事件A发生的概率为P(A),则0≤P(A)≤1.(  )
    (4)6张奖券中只有一张有奖,甲、乙先后各抽取一张,则甲中奖的概率小于乙中奖的概率.(  )
    答案 (1)× (2)√ (3)√ (4)×

    2.容量为20的样本数据,分组后的频数如下表:
    分组
    [10,20)
    [20,30)
    [30,40)
    [40,50)
    [50,60)
    [60,70]
    频数
    2
    3
    4
    5
    4
    2
    则样本数据落在区间[10,40)的频率为(  )
    A.0.35 B.0.45 C.0.55 D.0.65
    答案 B
    解析 由表知[10,40)的频数为2+3+4=9,
    所以样本数据落在区间[10,40)的频率为=0.45.
    3.某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,事件“至少有一名女生”与事件“全是男生”(  )
    A.是互斥事件,不是对立事件
    B.是对立事件,不是互斥事件
    C.既是互斥事件,也是对立事件
    D.既不是互斥事件也不是对立事件
    答案 C
    解析 “至少有一名女生”包括“一男一女”和“两名女生”两种情况,这两种情况再加上“全是男生”构成全集,且不能同时发生,故“至少有一名女生”与“全是男生”既是互斥事件,也是对立事件.


    4.(2018·全国Ⅲ卷)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为(  )
    A.0.3 B.0.4 C.0.6 D.0.7
    答案 B
    解析 某群体中的成员分为只用现金支付、既用现金支付也用非现金支付、不用现金支付,它们彼此是互斥事件,所以不用现金支付的概率为1-(0.15+0.45)=0.4.
    5.(2020·全国Ⅱ卷)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1 200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1 600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者(  )
    A.10名 B.18名 C.24名 D.32名
    答案 B
    解析 由题意,第二天完成积压订单及当日订单的配货的概率不小于0.95,即第二天确保完成新订单1 600份,减去超市每天能完成的1 200份,加上积压的500份,共有1 600-1 200+500=900(份),至少需要志愿者900÷50=18(名).
    6.抛掷一枚均匀的骰子(骰子的六个面上分别标有1,2,3,4,5,6个点)一次,观察掷出向上的点数,设事件A为掷出向上为偶数点,事件B为掷出向上为3点,则P(A∪B)=________.
    答案 
    解析 事件A为掷出向上为偶数点,所以P(A)=.事件B为掷出向上为3点,所以P(B)=,又事件A,B是互斥事件,所以P(A∪B)=P(A)+P(B)=.

    考点一 随机事件的关系
    1.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是,那么概率是的事件是(  )
    A.至多有一张移动卡 B.恰有一张移动卡
    C.都不是移动卡 D.至少有一张移动卡
    答案 A
    解析 由题意知“2张全是移动卡”的对立事件是“至多有一张移动卡”,又1-=,故“至多有一张移动卡”的概率是.
    2.口袋里装有1红,2白,3黄共6个除颜色外完全相同的小球,从中取出两个球,事件A=“取出的两个球同色”,B=“取出的两个球中至少有一个黄球”,C=“取出的两个球至少有一个白球”,D=“取出的两个球不同色”,E=“取出的两个球中至多有一个白球”.下列判断中正确的序号为________.
    ①A与D为对立事件;②B与C是互斥事件;③C与E是对立事件;④P(C∪E)=1.
    答案 ①④
    解析 当取出的两个球为一黄一白时,B与C都发生,②不正确;当取出的两个球中恰有一个白球时,事件C与E都发生,③不正确;显然A与D是对立事件,①正确;C∪E为必然事件,P(C∪E)=1,④正确.
    3.下列命题:
    ①对立事件一定是互斥事件;
    ②若A,B为两个事件,则P(A∪B)=P(A)+P(B);
    ③若事件A,B,C两两互斥,则P(A)+P(B)+P(C)=1;
    ④事件A,B满足P(A)+P(B)=1,则A,B是对立事件.
    其中错误的是________.
    答案 ②③④
    解析 对于①,对立事件是互斥事件中其中一个不发生,另一个必然发生的事件,所以正确.对于②,只有互斥事件才满足P(A∪B)=P(A)+P(B),不是任意事件都满足,故②错误.对于③,若A、B、C三事件两两互斥,不一定(A∪B)是C的对立事件,则P(A)+P(B)+P(C)=1不一定成立,③错误;对于④,对立事件的概率之和为1,但概率之和为1的两个事件不一定是对立事件,④错误.
    感悟升华 1.准确把握互斥事件与对立事件的概念:(1)互斥事件是不可能同时发生的事件,但也可以同时不发生;(2)对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生.
    2.判别互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两个事件为对立事件,对立事件一定是互斥事件.
    考点二 随机事件的频率与概率
    【例1】 (2020·全国Ⅰ卷)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元、50元、20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:
    甲分厂产品等级的频数分布表
    等级
    A
    B
    C
    D
    频数
    40
    20
    20
    20
    乙分厂产品等级的频数分布表
    等级
    A
    B
    C
    D
    频数
    28
    17
    34
    21
    (1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;
    (2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?
    解 (1)由试加工产品等级的频数分布表知,
    甲分厂加工出来的一件产品为A级品的概率的估计值为=0.4;
    乙分厂加工出来的一件产品为A级品的概率的估计值为=0.28.
    (2)由数据知甲分厂加工出来的100件产品利润的频数分布表为
    利润
    65
    25
    -5
    -75
    频数
    40
    20
    20
    20
    因此甲分厂加工出来的100件产品的平均利润为
    =15.
    由数据知乙分厂加工出来的100件产品利润的频数分布表为
    利润
    70
    30
    0
    -70
    频数
    28
    17
    34
    21
    因此乙分厂加工出来的100件产品的平均利润为
    =10.
    比较甲、乙两分厂加工的产品的平均利润,厂家应选甲分厂承接加工业务.
    感悟升华 1.频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值.
    2.利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐步趋近于某一个常数,这个常数就是概率.
    【训练1】 某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
    最高气温
    [10,15)
    [15,20)
    [20,25)
    [25,30)
    [30,35)
    [35,40]
    天数
    2
    16
    36
    25
    7
    4
    以最高气温位于各区间的频率估计最高气温位于该区间的概率.
    (1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;
    (2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.
    解 (1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表中数据可知,最高气温低于25的频率为=0.6.
    所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.
    (2)当这种酸奶一天的进货量为450瓶时,
    若最高气温低于20,则Y=200×6+(450-200)×2-450×4=-100;
    若最高气温位于区间[20,25),则Y=300×6+(450-300)×2-450×4=300;
    若最高气温不低于25,则Y=450×(6-4)=900,
    所以,利润Y的所有可能值为-100,300,900.
    Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为=0.8.
    因此Y大于零的概率的估计值为0.8.
    考点三 互斥事件与对立事件的概率
    【例2】 经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:
    排队人数
    0
    1
    2
    3
    4
    5人及5人以上
    概率
    0.1
    0.16
    0.3
    0.3
    0.1
    0.04
    求:(1)至多2人排队等候的概率;
    (2)至少3人排队等候的概率.
    解 记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A,B,C,D,E,F彼此互斥.
    (1)记“至多2人排队等候”为事件G,则G=A∪B∪C,
    所以P(G)=P(A∪B∪C)=P(A)+P(B)+P(C)
    =0.1+0.16+0.3=0.56.
    (2)法一 记“至少3人排队等候”为事件H,
    则H=D∪E∪F,
    所以P(H)=P(D∪E∪F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.
    法二 记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.
    感悟升华 1.求解本题的关键是正确判断各事件之间的关系,以及把所求事件用已知概率的事件表示出来.
    2.求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率再求和;二是间接法,先求该事件的对立事件的概率,再由P(A)=1-P()求解.当题目涉及“至多”、“至少”型问题,多考虑间接法.
    【训练2】 (1)某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽检一件是正品(甲级)的概率为(  )
    A.0.95 B.0.97 C.0.92 D.0.08
    (2)甲、乙两人下棋,两人下成和棋的概率是,乙获胜的概率是,则乙不输的概率是________.
    答案 (1)C (2)
    解析 (1)记“抽检的产品是甲级品”为事件A,是“乙级品”为事件B,是“丙级品”为事件C,这三个事件彼此互斥,因而所求概率为P(A)=1-P(B)-P(C)=1-5%-3%=92%=0.92.
    (2)乙不输包含两人下成和棋和乙获胜,且它们是互斥事件,所以乙不输的概率为+=.


    A级 基础巩固
    一、选择题
    1.下列说法正确的是(  )
    A.甲、乙二人比赛,甲胜的概率为,则比赛5场,甲胜3场
    B.某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,则第10个病人一定治愈
    C.随机试验的频率与概率相等
    D.天气预报中,预报明天降水概率为90%,是指降水的可能性是90%
    答案 D
    解析 由概率的意义知D正确.
    2.设事件A,B,已知P(A)=,P(B)=,P(A∪B)=,则A,B之间的关系一定为(  )
    A.两个任意事件 B.互斥事件
    C.非互斥事件 D.对立事件
    答案 B
    解析 因为P(A)+P(B)=+==P(A∪B),所以A,B之间的关系一定为互斥事件.
    3.从正五边形的五个顶点中,随机选取三个顶点连成三角形,对于事件A:“这个三角形是等腰三角形”,下列推断正确的是(  )
    A.事件A发生的概率是
    B.事件A发生的概率是
    C.事件A是不可能事件
    D.事件A是必然事件
    答案 D
    解析 从正五边形的五个顶点中,随机选取三个顶点连成三角形都是等腰三角形,故事件A是必然事件.
    4.(2020·太原模拟)已知随机事件A和B互斥,且P(A∪B)=0.7,P(B)=0.2,则P()=(  )
    A.0.5 B.0.1 C.0.7 D.0.8
    答案 A
    解析 ∵随机事件A和B互斥,且P(A∪B)=0.7,P(B)=0.2,∴P(A)=P(A∪B)-P(B)=0.7-0.2=0.5,∴P()=1-P(A)=1-0.5=0.5.
    5.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率是,都是白子的概率是.则从中任意取出2粒恰好是同一色的概率是(  )
    A. B. C. D.1
    答案 C
    解析 设“从中取出2粒都是黑子”为事件A,“从中取出2粒都是白子”为事件B,“任意取出2粒恰好是同一色”为事件C,则C=A∪B,且事件A与B互斥.
    由于P(A)=,P(B)=.
    所以P(C)=P(A)+P(B)=+=.
    6.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是(  )
    A.“至少有一个黑球”与“都是黑球”
    B.“至少有一个黑球”与“都是红球”
    C.“至少有一个黑球”与“至少有一个红球”
    D.“恰有一个黑球”与“恰有两个黑球”
    答案 D
    解析 A中的两个事件是包含关系,不是互斥事件;B中的两个事件是对立事件;C中的两个事件都包含“一个黑球一个红球”的事件,不是互斥关系;D中的两个事件是互斥而不对立的关系.
    7.根据某医疗研究所的调查,某地区居民血型的分布为:O型50%,A型15%,B型30%,AB型5%.现有一血液为A型病人需要输血,若在该地区任选一人,那么能为病人输血的概率为(  )
    A.15% B.20%
    C.45% D.65%
    答案 D
    解析 因为某地区居民血型的分布为O型50%,A型15%,B型30%,AB型5%,现在能为A型病人输血的有O型和A型,故为病人输血的概率为50%+15%=65%,故选D.
    8.抛掷一个质地均匀的骰子的试验,事件A表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则一次试验中,事件A+发生的概率为(  )
    A. B. C. D.
    答案 C
    解析 掷一个骰子的试验有6种可能结果,依题意P(A)==,P(B)==,所以P()=1-P(B)=1-=,
    因为表示“出现5点或6点”的事件,所以事件A与互斥,从而P(A+)=P(A)+P()=+=.
    二、填空题
    9.“键盘侠”一词描述了部分网民在现实生活中胆小怕事、自私自利,却习惯在网络上大放厥词的一种现象.某地新闻栏目对该地区群众对“键盘侠”的认可程度进行调查:在随机抽取的50人中,有14人持认可态度,其余持反对态度,若该地区有9 600人,则可估计该地区对“键盘侠”持反对态度的有________人.
    答案 6 912
    解析 在随机抽取的50人中,持反对态度的频率为1-=,则可估计该地区对“键盘侠”持反对态度的有9 600×=6 912(人).
    10.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的不是一等品”的概率为________.
    答案 0.35
    解析 事件“抽到的产品不是一等品”与事件A是对立事件,由于P(A)=0.65,所以由对立事件的概率公式得“抽到的产品不是一等品”的概率为P()=1-P(A)=1-0.65=0.35.
    11.我国西部一个地区的年降水量在下列区间内的概率如下表所示:
    年降水量(mm)
    (100,150)
    (150,200)
    (200,250)
    (250,300)
    概率
    0.21
    0.16
    0.13
    0.12
    则年降水量在(200,300)(mm)范围内的概率是________.
    答案 0.25
    解析 设年降水量在(200,300)、(200,250)、(250,300)的事件分别为A、B、C,则A=B∪C,且B、C为互斥事件,所以P(A)=P(B)+P(C)=0.13+0.12=0.25.
    12.(2021·郑州调研)一只袋子中装有7个红玻璃球,3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个,取得两个红玻璃球的概率为,取得两个绿玻璃球的概率为,则取得两个同色玻璃球的概率为________;至少取得一个红玻璃球的概率为________.
    答案  
    解析 由于“取得两个红玻璃球”与“取得两个绿玻璃球”是互斥事件,取得两个同色玻璃球,只需两互斥事件有一个发生即可,因而取得两个同色玻璃球的概率为P=+=.
    由于事件A“至少取得一个红玻璃球”与事件B“取得两个绿玻璃球”是对立事件,则至少取得一个红玻璃球的概率为P(A)=1-P(B)=1-=.
    B级 能力提升
    13.若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)=2-a,P(B)=4a-5,则实数a的取值范围是(  )
    A. B.
    C. D.
    答案 D
    解析 由题意可得
    即解得 14.据统计,某食品企业在一个月内被消费者投诉次数为0,1,2的概率分别为0.4,0.5,0.1.则该企业在一个月内被消费者投诉不超过1次的概率为________.
    答案 0.9
    解析 法一 记“该食品企业在一个月内被消费者投诉的次数为0”为事件A,“该食品企业在一个月内被消费者投诉的次数为1”为事件B,“该食品企业在一个月内被消费者投诉的次数为2”为事件C,“该食品企业在一个月内被消费者投诉的次数不超过1”为事件D,而事件D包含事件A与B,所以P(D)=P(A)+P(B)=0.4+0.5=0.9.
    法二 记“该食品企业在一个月内被消费者投诉的次数为2”为事件C,“该食品企业在一个月内被消费者投诉不超过1次”为事件D,由题意知C和D是对立事件,所以P(D)=1-P(C)=1-0.1=0.9.
    15.如图所示的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中乙的一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是________.

    答案 
    解析 设被污损的数字为x,则
    甲=(88+89+90+91+92)=90,
    乙=(83+83+87+99+90+x),
    若甲=乙,则x=8.
    若甲>乙,则x可以为0,1,2,3,4,5,6,7,
    故p==.
    16.某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39,32,33个成员,一些成员参加了不止一个小组,具体情况如图所示.

    现随机选取一个成员,他属于至少2个小组的概率是________,他属于不超过2个小组的概率是________.
    答案  
    解析 “至少2个小组”包含“2个小组”和“3个小组”两种情况,故他属于至少2个小组的概率为
    p==.
    “不超过2个小组”包含“1个小组”和“2个小组”,其对立事件是“3个小组”.
    故他属于不超过2个小组的概率是
    p=1-=.


    相关试卷

    2024年数学高考大一轮复习第十章 算法初步、统计与统计案例、概率: 这是一份2024年数学高考大一轮复习第十章 算法初步、统计与统计案例、概率,文件包含第4节变量间的相关关系与统计案例doc、第3节用样本估计总体doc、第6节古典概型与几何概型doc、第1节算法与程序框图doc、第5节随机事件的概率doc、第2节随机抽样doc等6份试卷配套教学资源,其中试卷共115页, 欢迎下载使用。

    2024高考数学大一轮复习Word版题库(人教A版文)第十章 算法初步、统计与统计案例、概率 第5节 随机事件的概率: 这是一份2024高考数学大一轮复习Word版题库(人教A版文)第十章 算法初步、统计与统计案例、概率 第5节 随机事件的概率,共15页。试卷主要包含了事件的关系与运算,概率的几个基本性质等内容,欢迎下载使用。

    2024高考数学大一轮复习Word版题库(人教A版文)第十章 算法初步、统计与统计案例、概率 第4节 变量间的相关关系与统计案例: 这是一份2024高考数学大一轮复习Word版题库(人教A版文)第十章 算法初步、统计与统计案例、概率 第4节 变量间的相关关系与统计案例,共24页。试卷主要包含了线性回归方程,回归分析,独立性检验,08,eq \r≈14等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        高考数学大一轮复习第十章 算法、统计与统计案例、概率 试卷
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map