![专题21.3 一元二次方程根的判别式【八大题型】(举一反三)(人教版)(原卷版)第1页](http://m.enxinlong.com/img-preview/2/3/14868987/1-1696228507862/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题21.3 一元二次方程根的判别式【八大题型】(举一反三)(人教版)(原卷版)第2页](http://m.enxinlong.com/img-preview/2/3/14868987/1-1696228507900/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题21.3 一元二次方程根的判别式【八大题型】(举一反三)(人教版)(解析版)第1页](http://m.enxinlong.com/img-preview/2/3/14868987/0-1696228506252/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题21.3 一元二次方程根的判别式【八大题型】(举一反三)(人教版)(解析版)第2页](http://m.enxinlong.com/img-preview/2/3/14868987/0-1696228506286/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题21.3 一元二次方程根的判别式【八大题型】(举一反三)(人教版)(解析版)第3页](http://m.enxinlong.com/img-preview/2/3/14868987/0-1696228506311/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:新人教版九年级数学上册精品卷+详细解析
- 2023年九年级数学上册专题21.1 一元二次方程的定义及解【八大题型】(举一反三)(人教版)(原卷版+解析版) 试卷 0 次下载
- 2023年九年级数学上册专题21.2 一元二次方程的解法【八大题型】(举一反三)(人教版)(原卷版+解析版) 试卷 0 次下载
- 2023年九年级数学上册专题21.4 一元二次方程根与系数的关系【八大题型】(举一反三)(人教版)(原卷版+解析版) 试卷 0 次下载
- 2023年九年级数学上册专题21.5 一元二次方程的实际应用【九大题型】(举一反三)(人教版)(原卷版+解析版) 试卷 0 次下载
- 2023年九年级数学上册专题21.6 一元二次方程中的动点问题专项训练(30道)(举一反三)(人教版)(原卷版+解析版) 试卷 0 次下载
初中数学人教版九年级上册21.1 一元二次方程课堂检测
展开
这是一份初中数学人教版九年级上册21.1 一元二次方程课堂检测,文件包含专题213一元二次方程根的判别式八大题型举一反三人教版原卷版docx、专题213一元二次方程根的判别式八大题型举一反三人教版解析版docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
专题21.3 一元二次方程根的判别式【八大题型】【人教版】 【题型1 由根的判别式判断方程根的情况(不含字母类)】【题型2 由根的判别式判断方程根的情况(含字母类)】【题型3 由根的判别式判断方程根的情况(综合类)】【题型4 由方程根的情况确定字母的取值范围】【题型5 由方程有两个相等的实数根求值】【题型6 根的判别式与新定义的综合】【题型7 由根的判别式证明方程根的必然情况】【题型8 根的判别式与三角形的综合】【知识点 一元二次方程根的判别式】一元二次方程根的判别式:.①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.【题型1 由根的判别式判断方程根的情况(不含字母类)】【例1】(2022•滨州)一元二次方程2x2﹣5x+6=0的根的情况为( )A.无实数根 B.有两个不等的实数根 C.有两个相等的实数根 D.不能判定【变式1-1】(2022•梧州)一元二次方程x2﹣3x+1=0的根的情况( )A.有两个相等的实数根 B.有两个不相等的实数根 C.没有实数根 D.无法确定【变式1-2】(2022春•长沙期末)关于x的一元二次方程的根的情况,下列说法正确的是( )A.有两个不相等的实数根 B.有两个相等的实数根 C.无实数根 D.不能确定【变式1-3】(2022•保定一模)方程(x+3)(x﹣1)=x﹣4的根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根 C.只有一个实数根 D.没有实数根【题型2 由根的判别式判断方程根的情况(含字母类)】【例2】(2022春•钱塘区期末)已知关于x的方程x2+(k+3)x+k+2=0,则下列说法正确的是( )A.不存在k的值,使得方程有两个相等的实数解 B.至少存在一个k的值,使得方程没有实数解 C.无论k为何值,方程总有一个固定不变的实数根 D.无论k为何值,方程有两个不相等的实数根【变式2-1】(2022•南召县模拟)已知关于x的方程(x﹣1)(x+2)=p,则下列分析正确的是( )A.当p=0时,方程有两个相等的实数根 B.当p>0时,方程有两个不相等的实数根 C.当p<0时,方程没有实数根 D.方程的根的情况与p的值无关【变式2-2】(2022•环翠区一模)对于任意的实数k,关于x的方程的根的情况为( )A.有两个相等的实数根 B.有两个不相等的实数根 C.没有实数根 D.无法判定【变式2-3】(2022春•平潭县期末)对于任意实数k,关于x的方程x2﹣2(k+5)x+2k2+4k+50=0的根的情况为( )A.有两个相等的实数根 B.无实数根 C.有两个不相等的实数根 D.无法判定【题型3 由根的判别式判断方程根的情况(综合类)】【例3】(2022•桥西区校级模拟)探讨关于x的一元二次方程ax2+bx﹣1=0总有实数根的条件,下面三名同学给出建议:甲:a,b同号;乙:a﹣b﹣1=0;丙:a+b﹣1=0.其中符合条件的是( )A.甲,乙,丙都正确 B.只有甲不正确 C.甲,乙,丙都不正确 D.只有乙正确【变式3-1】(2022•肥西县模拟)已知三个实数a,b,c满足a+b﹣c=0,3a+b﹣c>0,则关于x的方程ax2﹣cx+b=0的根的情况是( )A.无实数根 B.有且只有一个实数根 C.两个实数根 D.无数个实数根【变式3-2】(2022春•德阳月考)函数y=kx﹣b的图象如图所示,则关于x的一元二次方程x2+bx+k﹣1=0的根的情况是( )A.没有实数根 B.有两个相等的实数根 C.有两个不相等的实数根 D.无法确定【变式3-3】(2022•咸安区模拟)已知不等式组有3个整数解,则关于x的方程ax2+(2a﹣1)x+a=0根的情况为( )A.无法判断 B.有两个不相等的实数根 C.有两个相等的实数根 D.无实数根【题型4 由方程根的情况确定字母的取值范围】【例4】(2022春•长丰县期末)关于x的一元二次方程(m﹣1)x2+2x﹣1=0有两个不相等的实数根,则m的取值范围是( )A.m<﹣1 B.m>0 C.m<1且m≠0 D.m>0且m≠1【变式4-1】(2022•西平县模拟)若关于x的一元二次方程x2﹣(2k﹣1)x+k2﹣2=0有实数根,则k的取值范围是( )A. B. C. D.【变式4-2】(2022•滑县模拟)若关于x的一元二次方程2kx2﹣3x+1=0有两个不相等的实数根,则k的取值范围是( )A.k>﹣9 B.k>﹣9且k≠0 C.k≥﹣1且k≠0 D.k>﹣1且k≠0【变式4-3】(2022•定海区一模)直线y=x﹣a不经过第二象限,且关于x的方程ax2﹣2x+1=0有实数解,则a的取值范围是( )A.0≤a≤1 B.o≤a<1 C.0<a≤1 D.0<a<1【题型5 由方程有两个相等的实数根求值】【例5】(2022•合肥模拟)若关于x的一元二次方程x(x﹣2)=2mx有两个相等的实数根,则实数m的值为( )A.﹣1 B.0 C.﹣1或0 D.4或1【变式5-1】(2022•高新区校级二模)已知一元二次方程有两个相等的实数根,则a,b的值可能是( )A.a=﹣1,b=﹣4 B.a=0,b=0 C.a=1,b=2 D.a=1,b=4【变式5-2】(2022•江夏区模拟)已知关于x的一元二次方程(3a﹣1)x2﹣ax0有两个相等的实数根,则代数式a2﹣2a+1的值( )A..﹣3 B..3 C.2 D.﹣2【变式5-3】(2022春•余杭区月考)若关于x的一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根,且满足4a﹣2b+c=0,则( )A.b=a B.c=2a C.a(x+2)2=0 D.﹣a(x﹣2)2=0【题型6 根的判别式与新定义的综合】【例6】(2022•烟台一模)定义新运算a⋆b,对于任意实数a,b满足a⋆b﹣(a+b)(a﹣b)﹣2.例如3⋆2=(3+2)(3﹣2)﹣2=5﹣2=1,若x⋆(2x﹣1)=﹣3是关于x的方程,则它的根的情况是( )A.有一个实根 B.没有实数根 C.有两个相等的实数根 D.有两个不相等的实数根【变式6-1】(2022•青县二模)定义运算:m※n=mn2﹣2mn﹣1,例如:4※2=4×22﹣2×4×2﹣1=﹣1.若关于x的方程a※x=0有实数根,则a的取值范围为( )A.﹣1≤a≤0 B.﹣1≤a<0 C.a≥0或a≤﹣1 D.a>0或a≤﹣1【变式6-2】(2022•宁远县模拟)定义新运算“※”:对于实数m,n,p,q有[m,p]※[q,n]=mn+pq,其中等式右边是通常的加法和乘法运算,例如:[2,3]※[4,5]=2×5+3×4=22,若关于x的方程(x2+1,x]※[5﹣2k,k]=0有两个实数根,则k的取值范围是( )A.k且k≠0 B.k C.k且k≠0 D.k【变式6-3】(2022•郑州模拟)定义新运算“a*b”:对于任意实数a,b,都有a*b=a2+b2﹣2ab﹣2,其中等式右边是通常的加法、减法、乘法运算,例如:5*6=52+62﹣2×5×6﹣2=﹣1.若方程x*k=xk(k为实数)是关于x的方程,则方程的根的情况为( )A.只有一个实数根 B.有两个相等的实数根 C.有两个不相等的实数根 D.没有实数根【题型7 由根的判别式证明方程根的必然情况】【例7】(2021秋•瓦房店市期末)已知关于x的一元二次方程2x2+2mx+m﹣1=0,求证:不论m为什么实数,这个方程总有两个不相等实数根. 【变式7-1】(2021秋•惠来县月考)已知一元二次方程x2+px+q+1=0的一个根为2.(1)求q关于p的关系式;(2)求证:方程x2+px+q=0有两个不等的实数根. 【变式7-2】(2021秋•方城县期末)已知关于x的一元二次方程(x﹣1)(x﹣4)=p2,其中p为实数.(1)求证:方程有两个不相等的实数根;(2)试写出三个p的值,使一元二次方程有整数解,并简要说明理由. 【变式7-3】(2022•东城区校级模拟)已知关于x的方程mx2+nx﹣2=0(m≠0).(1)求证:当n=m﹣2时,方程总有两个实数根;(2)若方程两个相等的实数根都是整数,写出一组满足条件的m,n的值,并求此时方程的根. 【题型8 根的判别式与三角形的综合】【例8】(2022•莲池区二模)若等腰三角形三边的长分别是a,b,3,且a,b是关于x的一元二次方程x2﹣4x+m=0的两个根,则满足上述条件的m的值有( )A.1个 B.2个 C.3个 D.3个以上【变式8-1】(2022春•温州期中)等腰三角形ABC的三条边长分别为4,a,b,若关于x的一元二次方程x2+(a+2)x+6﹣a=0有两个相等的实数根,则△ABC的周长是 .【变式8-2】(2022春•宁波期中)已知:关于x的一元二次方程x2﹣2mx+m2﹣1=0.(1)判断方程的根的情况;(2)若△ABC为等腰三角形,AB=5cm,另外两条边长是该方程的根,求△ABC的周长. 【变式8-3】(2021秋•揭西县期末)等腰三角形的三边长分别为a、b、c,若a=6,b与c是方程x2﹣(3m+1)x+2m2+2m=0的两根,求此三角形的周长.
相关试卷
这是一份初中数学沪科版九年级上册第21章 二次函数与反比例函数21.1 二次函数优秀同步训练题,文件包含专题228相似形章末拔尖卷沪科版原卷版docx、专题228相似形章末拔尖卷沪科版解析版docx等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。
这是一份初中数学人教版八年级下册17.1 勾股定理练习,文件包含2024年八年级数学下册专题172勾股定理的应用八大题型举一反三人教版原卷版docx、2024年八年级数学下册专题172勾股定理的应用八大题型举一反三人教版解析版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。
这是一份初中数学人教版九年级上册第二十二章 二次函数22.1 二次函数的图象和性质22.1.1 二次函数练习,文件包含专题229二次函数中的最值问题八大题型举一反三人教版原卷版docx、专题229二次函数中的最值问题八大题型举一反三人教版解析版docx等2份试卷配套教学资源,其中试卷共65页, 欢迎下载使用。