|试卷下载
搜索
    上传资料 赚现金
    2021年山东省临沂市中考数学真题试卷 解析版
    立即下载
    加入资料篮
    2021年山东省临沂市中考数学真题试卷  解析版01
    2021年山东省临沂市中考数学真题试卷  解析版02
    2021年山东省临沂市中考数学真题试卷  解析版03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021年山东省临沂市中考数学真题试卷 解析版

    展开
    这是一份2021年山东省临沂市中考数学真题试卷 解析版,共26页。试卷主要包含了﹣的相反数是,计算2a3•5a3的结果是,如图所示的几何体的主视图是,方程x2﹣x=56的根是,计算等内容,欢迎下载使用。

    2021年山东省临沂市中考数学试卷
    一.选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的。
    1.﹣的相反数是(  )
    A.﹣ B.﹣2 C.2 D.
    2.2021年5月15日,天问一号探测器成功着陆火星,中国成为全世界第二个实现火星着陆的国家.据测算,地球到火星的最近距离约为55000000km,将数据55000000用科学记数法表示为(  )
    A.5.5×106 B.0.55×108 C.5.5×107 D.55×106
    3.计算2a3•5a3的结果是(  )
    A.10a6 B.10a9 C.7a3 D.7a6
    4.如图所示的几何体的主视图是(  )

    A. B. C. D.
    5.如图,在AB∥CD中,∠AEC=40°,CB平分∠DCE,则∠ABC的度数为(  )

    A.10° B.20° C.30° D.40°
    6.方程x2﹣x=56的根是(  )
    A.x1=7,x2=8 B.x1=7,x2=﹣8
    C.x1=﹣7,x2=8 D.x1=﹣7,x2=﹣8
    7.不等式<x+1的解集在数轴上表示正确的是(  )
    A. B.
    C. D.
    8.计算(a﹣)÷(﹣b)的结果是(  )
    A.﹣ B. C.﹣ D.
    9.如图,点A,B都在格点上,若BC=,则AC的长为(  )

    A. B. C.2 D.3
    10.现有4盒同一品牌的牛奶,其中2盒已过期,随机抽取2盒,至少有一盒过期的概率是(  )
    A. B. C. D.
    11.如图,PA、PB分别与⊙O相切于A、B,∠P=70°,C为⊙O上一点,则∠ACB的度数为(  )

    A.110° B.120° C.125° D.130°
    12.某工厂生产A、B两种型号的扫地机器人.B型机器人比A型机器人每小时的清扫面积多50%;清扫100m2所用的时间A型机器人比B型机器人多用40分钟.两种型号扫地机器人每小时分别清扫多少面积?若设A型扫地机器人每小时清扫xm2,根据题意可列方程为(  )
    A.=+ B.+=
    C.+= D.=+
    13.已知a>b,下列结论:①a2>ab;②a2>b2;③若b<0,则a+b<2b;④若b>0,则<,其中正确的个数是(  )
    A.1 B.2 C.3 D.4
    14.实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系.

    如图为表示镭的放射规律的函数图象,据此可计算32mg镭缩减为1mg所用的时间大约是(  )
    A.4860年 B.6480年 C.8100年 D.9720年
    二.填空题(本大题共5小题,每小题3分,共15分)
    15.分解因式:2a3﹣8a=   .
    16.比较大小:2   5(选填“>”、“=”、“<”).
    17.某学校八年级(2)班有20名学生参加学校举行的“学党史、看红书”知识竞赛,成绩统计如图.这个班参赛学生的平均成绩是    .

    18.在平面直角坐标系中,平行四边形ABCD的对称中心是坐标原点,顶点A、B的坐标分别是(﹣1,1)、(2,1),将平行四边形ABCD沿x轴向右平移3个单位长度,则顶点C的对应点C1的坐标是    .
    19.数学知识在生产和生活中被广泛应用,下列实例所应用的最主要的几何知识,说法正确的是    (只填写序号).
    ①射击时,瞄准具的缺口、准星和射击目标在同一直线上,应用了“两点确定一条直线”;
    ②车轮做成圆形,应用了“圆是中心对称图形”;
    ③学校门口的伸缩门由菱形而不是其他四边形组成,应用了“菱形的对角线互相垂直平分”;
    ④地板砖可以做成矩形,应用了“矩形对边相等”.

    三.解答题(本大题共7小题,共63分)
    20.(7分)计算|﹣|+(﹣)2﹣(+)2.
    21.(7分)实施乡村振兴计划以来,我市农村经济发展进入了快车道,为了解梁家岭村今年一季度经济发展状况,小玉同学的课题研究小组从该村300户家庭中随机抽取了20户,收集到他们一季度家庭人均收入的数据如下(单位:万元):
    0.69 0.73 0.74 0.80 0.81 0.98 0.93 0.81 0.89 0.69
    0.74 0.99 0.98 0.78 0.80 0.89 0.83 0.89 0.94 0.89
    研究小组的同学对以上数据进行了整理分析,得到下表:
    分组
    频数
    0.65≤x<0.70
    2
    0.70≤x<0.75
    3
    0.75≤x<0.80
    1
    0.80≤x<0.85
    a
    0.85≤x<0.90
    4
    0.90≤x<0.95
    2
    0.95≤x<1.00
    b

    统计量
    平均数
    中位数
    众数
    数值
    0.84
    c
    d
    (1)表格中:a=   ,b=   ,c=   ,d=   ;
    (2)试估计今年一季度梁家岭村家庭人均收入不低于0.8万元的户数;
    (3)该村梁飞家今年一季度人均收入为0.83万元,能否超过村里一半以上的家庭?请说明理由.
    22.(7分)如图,在某小区内拐角处的一段道路上,有一儿童在C处玩耍,一辆汽车从被楼房遮挡的拐角另一侧的A处驶来,已知CM=3m,CO=5m,DO=3m,∠AOD=70°,汽车从A处前行多少米才能发现C处的儿童(结果保留整数)?
    (参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75;sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)

    23.(9分)已知函数y=
    (1)画出函数图象;
    列表:
    x

       
       
       
       
       
       
       
       

    y

       
       
       
       
       
       
       
       
    .…
    描点,连线得到函数图象:

    (2)该函数是否有最大或最小值?若有,求出其值,若没有,简述理由;
    (3)设(x1,y1),(x2,y2)是函数图象上的点,若x1+x2=0,证明:y1+y2=0.
    24.(9分)如图,已知在⊙O中,==,OC与AD相交于点E.
    求证:(1)AD∥BC;
    (2)四边形BCDE为菱形.

    25.(11分)公路上正在行驶的甲车,发现前方20m处沿同一方向行驶的乙车后,开始减速,减速后甲车行驶的路程s(单位:m)、速度v(单位:m/s)与时间t(单位:s)的关系分别可以用二次函数和一次函数表示,其图象如图所示.
    (1)当甲车减速至9m/s时,它行驶的路程是多少?
    (2)若乙车以10m/s的速度匀速行驶,两车何时相距最近,最近距离是多少?

    26.(13分)如图,已知正方形ABCD,点E是BC边上一点,将△ABE沿直线AE折叠,点B落在F处,连接BF并延长,与∠DAF的平分线相交于点H,与AE,CD分别相交于点G,M,连接HC.
    (1)求证:AG=GH;
    (2)若AB=3,BE=1,求点D到直线BH的距离;
    (3)当点E在BC边上(端点除外)运动时,∠BHC的大小是否变化?为什么?


    2021年山东省临沂市中考数学试卷
    参考答案与试题解析
    一.选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的。
    1.﹣的相反数是(  )
    A.﹣ B.﹣2 C.2 D.
    【分析】只有符号相反的两个数互为相反数,根据相反数的定义即可解答.
    【解答】解:﹣的相反数是,
    故选:D.
    2.2021年5月15日,天问一号探测器成功着陆火星,中国成为全世界第二个实现火星着陆的国家.据测算,地球到火星的最近距离约为55000000km,将数据55000000用科学记数法表示为(  )
    A.5.5×106 B.0.55×108 C.5.5×107 D.55×106
    【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.
    【解答】解:将55000000用科学记数法表示为5.5×107.
    故选:C.
    3.计算2a3•5a3的结果是(  )
    A.10a6 B.10a9 C.7a3 D.7a6
    【分析】根据单项式乘单项式的法则进行计算即可.
    【解答】解:2a3•5a3=10a3+3=10a6,
    故选:A.
    4.如图所示的几何体的主视图是(  )

    A. B. C. D.
    【分析】根据简单几何体三视图的画法可得答案.
    【解答】解:从正面看该几何体,由能看见的轮廓线用实线表示可得选项B中的图形符合题意,
    故选:B.
    5.如图,在AB∥CD中,∠AEC=40°,CB平分∠DCE,则∠ABC的度数为(  )

    A.10° B.20° C.30° D.40°
    【分析】由两直线平行,内错角相等得到∠ECD=40°,由角平分线的定义得到∠BCD=20°,最后根据两直线平行,内错角相等即可得解.
    【解答】解:∵AB∥CD,∠AEC=40°,
    ∴∠ECD=∠AEC=40°,
    ∵CB平分∠DCE,
    ∴∠BCD=∠DCE=20°,
    ∵AB∥CD,
    ∴∠ABC=∠BCD=20°,
    故选:B.
    6.方程x2﹣x=56的根是(  )
    A.x1=7,x2=8 B.x1=7,x2=﹣8
    C.x1=﹣7,x2=8 D.x1=﹣7,x2=﹣8
    【分析】利用因式分解法求解即可。
    【解答】解:∵x2﹣x=56,
    ∴x2﹣x﹣56=0,
    则(x﹣8)(x+7)=0,
    ∴x﹣8=0或x+7=0,
    解得x1=﹣7,x2=8,
    故选:C.
    7.不等式<x+1的解集在数轴上表示正确的是(  )
    A. B.
    C. D.
    【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得其解集,继而表示在数轴上即可.
    【解答】解:去分母,得:x﹣1<3x+3,
    移项,得:x﹣3x<3+1,
    合并同类项,得:﹣2x<4,
    系数化为1,得:x>﹣2,
    将不等式的解集表示在数轴上如下:

    故选:B.
    8.计算(a﹣)÷(﹣b)的结果是(  )
    A.﹣ B. C.﹣ D.
    【分析】根据分式的减法和除法法则可以化简题目中的式子.
    【解答】解:(a﹣)÷(﹣b)
    =÷

    =﹣,
    故选:A.
    9.如图,点A,B都在格点上,若BC=,则AC的长为(  )

    A. B. C.2 D.3
    【分析】根据勾股定理可以得到AB的长,然后由图可知AC=AB﹣BC,然后代入数据计算即可.
    【解答】解:由图可得,
    AB====2,
    ∵BC=,
    ∴AC=AB﹣BC=2﹣=,
    故选:B.
    10.现有4盒同一品牌的牛奶,其中2盒已过期,随机抽取2盒,至少有一盒过期的概率是(  )
    A. B. C. D.
    【分析】画树状图,共有12种等可能的结果,至少有一盒过期的结果有10种,再由概率公式求解即可.
    【解答】解:把2盒不过期的牛奶记为A、B,2盒已过期的牛奶记为C、D,
    画树状图如图:

    共有12种等可能的结果,至少有一盒过期的结果有10种,
    ∴至少有一盒过期的概率为=,
    故选:D.
    11.如图,PA、PB分别与⊙O相切于A、B,∠P=70°,C为⊙O上一点,则∠ACB的度数为(  )

    A.110° B.120° C.125° D.130°
    【分析】由切线的性质得出∠OAP=∠OBP=90°,利用四边形内角和可求∠AOB=110°,再利用圆周角定理可求∠ADB=55°,再根据圆内接四边形对角互补可求∠ACB.
    【解答】解:如图所示,连接OA,OB,在优弧AB上取点D,连接AD,BD,

    ∵AP、BP是⊙O切线,
    ∴∠OAP=∠OBP=90°,
    ∴∠AOB=360°﹣90°﹣90°﹣70°=110°,
    ∴∠ADB=AOB=55°,
    又∵圆内接四边形的对角互补,
    ∴∠ACB=180°﹣∠ADB=180°﹣55°=125°.
    故选:C.
    12.某工厂生产A、B两种型号的扫地机器人.B型机器人比A型机器人每小时的清扫面积多50%;清扫100m2所用的时间A型机器人比B型机器人多用40分钟.两种型号扫地机器人每小时分别清扫多少面积?若设A型扫地机器人每小时清扫xm2,根据题意可列方程为(  )
    A.=+ B.+=
    C.+= D.=+
    【分析】若设A型扫地机器人每小时清扫xm2,则B型扫地机器人每小时清扫(1+50%)xm2,根据“清扫100m2所用的时间A型机器人比B型机器人多用40分钟”列出方程,此题得解.
    【解答】解:若设A型扫地机器人每小时清扫xm2,则B型扫地机器人每小时清扫(1+50%)xm2,
    根据题意,得=+.
    故选:D.
    13.已知a>b,下列结论:①a2>ab;②a2>b2;③若b<0,则a+b<2b;④若b>0,则<,其中正确的个数是(  )
    A.1 B.2 C.3 D.4
    【分析】根据不等式的性质逐个判断即可.
    【解答】解:∵a>b,
    ∴当a>0时,a2>ab,
    当a<0时,a2<ab,故①结论错误;
    ∵a>b,
    ∴当|a|>|b|时,a2>b2,
    ∴当|a|<|b|时,a2<b2,
    故②结论错误;
    ∵a>b,b<0,
    ∴a+b>2b,故③结论错误;
    ∵a>b,b>0,
    ∴a>b>0,
    ∴,故④结论正确;
    ∴正确的个数是1个.
    故选:A.
    14.实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系.

    如图为表示镭的放射规律的函数图象,据此可计算32mg镭缩减为1mg所用的时间大约是(  )
    A.4860年 B.6480年 C.8100年 D.9720年
    【分析】根据物质所剩的质量与时间的规律,可得答案.
    【解答】解:由图可知:
    1620年时,镭质量缩减为原来的,
    再经过1620年,即当3240年时,镭质量缩减为原来的,
    再经过1620×2=3240年,即当4860年时,镭质量缩减为原来的,
    ...,
    ∴再经过1620×4=6480年,即当8100年时,镭质量缩减为原来的,
    此时32×=1mg,
    故选:C.
    二.填空题(本大题共5小题,每小题3分,共15分)
    15.分解因式:2a3﹣8a= 2a(a+2)(a﹣2) .
    【分析】原式提取2a,再利用平方差公式分解即可.
    【解答】解:原式=2a(a2﹣4)=2a(a+2)(a﹣2),
    故答案为:2a(a+2)(a﹣2)
    16.比较大小:2 < 5(选填“>”、“=”、“<”).
    【分析】先把两数值化成带根号的形式,再根据实数的大小比较方法即可求解.
    【解答】解:∵2=,5=,
    而24<25,
    ∴2<5.
    故填空答案:<.
    17.某学校八年级(2)班有20名学生参加学校举行的“学党史、看红书”知识竞赛,成绩统计如图.这个班参赛学生的平均成绩是  95.5 .

    【分析】先根据统计图得出每组的人数,在根据加权平均数的计算公式即可.
    【解答】解:由统计图可知四个成绩的人数分别为3,2,5,10,
    ∴,
    故答案为95.5.
    18.在平面直角坐标系中,平行四边形ABCD的对称中心是坐标原点,顶点A、B的坐标分别是(﹣1,1)、(2,1),将平行四边形ABCD沿x轴向右平移3个单位长度,则顶点C的对应点C1的坐标是  (4,﹣1) .
    【分析】由题意A,C关于原点对称,求出点C的坐标,再利用平移的性质求出点C1的坐标可得结论.
    【解答】解:∵平行四边形ABCD的对称中心是坐标原点,
    ∴点A,点C关于原点对称,
    ∵A(﹣1,1),
    ∴C(1,﹣1),
    ∴将平行四边形ABCD沿x轴向右平移3个单位长度,则顶点C的对应点C1的坐标是(4,﹣1),
    故答案为:(4,﹣1).
    19.数学知识在生产和生活中被广泛应用,下列实例所应用的最主要的几何知识,说法正确的是  ①③ (只填写序号).
    ①射击时,瞄准具的缺口、准星和射击目标在同一直线上,应用了“两点确定一条直线”;
    ②车轮做成圆形,应用了“圆是中心对称图形”;
    ③学校门口的伸缩门由菱形而不是其他四边形组成,应用了“菱形的对角线互相垂直平分”;
    ④地板砖可以做成矩形,应用了“矩形对边相等”.

    【分析】①根据两点确定一条直线进行判断.
    ②利用车轮中心与地面的距离保持不变,坐车的人感到非常平稳进行判断.
    ③根据菱形的性质进行判断.
    ④根据矩形的性质进行判断.
    【解答】解:①在正常情况下,射击时要保证瞄准的一只眼在准星和缺口确定的直线上,才能射中目标,应用了“两点确定一条直线”,故符合题意.
    ②因为圆上各点到圆心的距离相等,所以车轮中心与地面的距离保持不变,坐车的人感到非常平稳,故不符合题意.
    ③学校门口的伸缩门由菱形而不是其他四边形组成,应用了“菱形的对角线互相垂直平分”,故符合题意;
    ④地板砖可以做成矩形,应用了“矩形四个内角都是直角”的性质,故不符合题意.
    故答案是:①③.
    三.解答题(本大题共7小题,共63分)
    20.(7分)计算|﹣|+(﹣)2﹣(+)2.
    【分析】分别运用绝对值的性质和乘法公式展开再合并即可.
    【解答】解:原式=+[()²﹣+]﹣[()²++],
    =+(2﹣+)﹣(2++),
    ==+2﹣+﹣2﹣﹣,
    =﹣.
    21.(7分)实施乡村振兴计划以来,我市农村经济发展进入了快车道,为了解梁家岭村今年一季度经济发展状况,小玉同学的课题研究小组从该村300户家庭中随机抽取了20户,收集到他们一季度家庭人均收入的数据如下(单位:万元):
    0.69 0.73 0.74 0.80 0.81 0.98 0.93 0.81 0.89 0.69
    0.74 0.99 0.98 0.78 0.80 0.89 0.83 0.89 0.94 0.89
    研究小组的同学对以上数据进行了整理分析,得到下表:
    分组
    频数
    0.65≤x<0.70
    2
    0.70≤x<0.75
    3
    0.75≤x<0.80
    1
    0.80≤x<0.85
    a
    0.85≤x<0.90
    4
    0.90≤x<0.95
    2
    0.95≤x<1.00
    b

    统计量
    平均数
    中位数
    众数
    数值
    0.84
    c
    d
    (1)表格中:a= 5 ,b= 3 ,c= 0.82 ,d= 0.89 ;
    (2)试估计今年一季度梁家岭村家庭人均收入不低于0.8万元的户数;
    (3)该村梁飞家今年一季度人均收入为0.83万元,能否超过村里一半以上的家庭?请说明理由.
    【分析】(1)根据所给数据计数即可得a、b的值,根据根据中位数和众数的定义求解可得c、d的值;
    (2)求出今年一季度梁家岭村家庭人均收入不低于0.8万元的户数所占得百分比即可得到结论;
    (3)根据中位数进行判断即可.
    【解答】解:(1)由统计频数的方法可得,a=5,b=3,
    将A村家庭收入从小到大排列,处在中间位置的两个数的平均数为(0.81+0.83)÷2=0.82,
    因此中位数是0.82,即c=0.82,
    他们一季度家庭人均收入的数据出现最多的是0.89,
    因此众数是0.89,即d=0.89,
    故答案为:5,3,0.82,0.89;
    (2)300×=210(户),
    答:估计今年一季度梁家岭村家庭人均收入不低于0.8万元的户数有210户;
    (3)该村梁飞家今年一季度人均收入为0.83万元,能超过村里一半以上的家庭,
    理由:该村300户家庭一季度家庭人均收入的中位数是0.82,0.83>0.82,
    所以该村梁飞家今年一季度人均收入为0.83万元,能超过村里一半以上的家庭.
    22.(7分)如图,在某小区内拐角处的一段道路上,有一儿童在C处玩耍,一辆汽车从被楼房遮挡的拐角另一侧的A处驶来,已知CM=3m,CO=5m,DO=3m,∠AOD=70°,汽车从A处前行多少米才能发现C处的儿童(结果保留整数)?
    (参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75;sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)

    【分析】利用勾股定理求出OM,证明△COM∽△BOD,求出BD,在△AOD中,利用三角函数的定义求出AB即可.
    【解答】解:∵CM=3m,OC=5m,
    ∴OM==4(m),
    ∵∠CMO=∠BDO=90°,∠COM=∠BOD,
    ∴△COM∽△BOD,
    ∴,即,
    ∴BD==2.25(m),
    ∴tan∠AOD=tan70°=,
    即≈2.75(m),
    解得:AB=6m,
    ∴汽车从A处前行约6米才能发现C处的儿童.
    23.(9分)已知函数y=
    (1)画出函数图象;
    列表:
    x

     ﹣3 
     ﹣2 
     ﹣1 
     0 
     1 
     2 
     3 
     4 

    y

     ﹣1 
      
     ﹣3 
     0 
     3 
      
     1 
      
    .…
    描点,连线得到函数图象:

    (2)该函数是否有最大或最小值?若有,求出其值,若没有,简述理由;
    (3)设(x1,y1),(x2,y2)是函数图象上的点,若x1+x2=0,证明:y1+y2=0.
    【分析】(1)选取特殊值,代入函数解析式,求出y值,列表,在图像中描点,画出图像即可;
    (2)观察图像可得函数的最大值;
    (3)根据x1+x2=0,得到x1和x2互为相反数,再分﹣1<x1<1,x1≤﹣1,x1≥1,分别验证y1+y2=0.
    【解答】解:(1)列表如下:
    x
    ...
    ﹣3
    ﹣2
    ﹣1
    0
    1
    2
    3
    4
    ...
    y
    ...
    ﹣1

    ﹣3
    0
    3

    1

    ...
    函数图像如图所示:


    (2)根据图像可知:
    当x=1时,函数有最大值3;
    (3)∵(x1,x2)是函数图象上的点,x1+x2=0,
    ∴x1和x2互为相反数,
    当﹣1<x1<1时,﹣1<x2<1,
    ∴y1=3x1,y2=3x2,
    ∴y1+y2=3x1+3x2=3(x1+x2)=0;
    当x1≤﹣1时,x2≥1,
    则y1+y2==0;
    同理:当x1≥1时,x2≤﹣1,
    y1+y2=0,
    综上:y1+y2=0.
    24.(9分)如图,已知在⊙O中,==,OC与AD相交于点E.
    求证:(1)AD∥BC;
    (2)四边形BCDE为菱形.

    【分析】(1)连接BD,根据圆周角定理可得∠ADBADB=∠CBDCBD,根据平行线的判定可得结论;
    (2)证明△DEFDEF≌△BCFBCF,得到DE=BCDE=BC,证明四边形BCDEBCDE为平行四边形,再根据得到BCC=CDCD,从而证明菱形.
    【解答】解:(1)连接BD,
    ∵,
    ∴∠ADBADB=∠CBD,
    ∴ADAD∥BCBC;

    (2)连接CD,
    ∵ADAD∥BBC,
    ∴∠EDFEDF=∠CBFCB,
    ∵,
    ∴BCC=CDCD,
    ∴BFBF=DF,又∠DFE=∠BFBFC,
    ∴△DEFDEF≌△BCF(ASAa),
    ∴DE=BCDE=BC,
    ∴四边形BCDEBCDE是平行四边形,又BCBC=CD,
    ∴四边形BCDEBCDE是菱形.
    25.(11分)公路上正在行驶的甲车,发现前方20m处沿同一方向行驶的乙车后,开始减速,减速后甲车行驶的路程s(单位:m)、速度v(单位:m/s)与时间t(单位:s)的关系分别可以用二次函数和一次函数表示,其图象如图所示.
    (1)当甲车减速至9m/s时,它行驶的路程是多少?
    (2)若乙车以10m/s的速度匀速行驶,两车何时相距最近,最近距离是多少?

    【分析】(1)根据图像分别求出一次函数和二次函数解析式,令v=9求出t,代入求出s即可;
    (2)分析得出当v=10m/s时,两车之间距离最小,代入计算即可.
    【解答】解:(1)由图可知:二次函数图像经过原点,
    设二次函数表达式为s=at2+bt,一次函数表达式为v=kt+c,
    ∵一次函数经过(0,16),(8,8),
    则,解得:,
    ∴一次函数表达式为v=﹣t+16,
    令v=9,则t=7,
    ∴当t=7时,速度为9m/s,
    ∵二次函数经过(2,30),(4,56),
    则,解得:,
    ∴二次函数表达式为,
    令t=7,则s==87.5,
    ∴当甲车减速至9m/s时,它行驶的路程是87.5m;
    (2)∵当t=0时,甲车的速度为16m/s,
    ∴当10<v<16时,两车之间的距离逐渐变小,
    当0<v<10时,两车之间的距离逐渐变大,
    ∴当v=10m/s时,两车之间距离最小,
    将v=10代入v=﹣t+16中,得t=6,
    将t=6代入中,得s=78,
    此时两车之间的距离为:10×6+20﹣78=2m,
    ∴6秒时两车相距最近,最近距离是2米.
    26.(13分)如图,已知正方形ABCD,点E是BC边上一点,将△ABE沿直线AE折叠,点B落在F处,连接BF并延长,与∠DAF的平分线相交于点H,与AE,CD分别相交于点G,M,连接HC.
    (1)求证:AG=GH;
    (2)若AB=3,BE=1,求点D到直线BH的距离;
    (3)当点E在BC边上(端点除外)运动时,∠BHC的大小是否变化?为什么?

    【分析】(1)由折叠的性质得出∠BAG=∠GAF=∠BAF,B,F关于AE对称,证出∠EAH=BAD=45°,由等腰直角三角形的性质得出答案;
    (2)连接DH,DF,交AH于点N,由(1)可知AF=AD,∠FAH=∠DAH,得出∠DHF=90°,由勾股定理求出AE=,证明△AEB∽△ABG,得出比例线段,,可求出AG,BG的长,则可求出答案.
    (3)方法一:连接BD,由锐角三角函数的定义求出,证明△BDF∽△CDH,由相似三角形的性质得出∠CDH=∠BFD,则可得出答案.
    方法二:连接BD,证出点B,C,H,D四点共圆,则可得出结论.
    【解答】(1)证明:∵将△ABE沿直线AE折叠,点B落在F处,
    ∴∠BAG=∠GAF=∠BAF,B,F关于AE对称,
    ∴AG⊥BF,
    ∴∠AGF=90°,
    ∵AH平分∠DAF,
    ∴∠FAH=∠FAD,
    ∴∠EAH=∠GAF+∠FAH=∠BAF+∠FAD=(∠BAF+∠FAD)=∠BAD,
    ∵四边形ABCD是正方形,
    ∴∠BAD=90°,
    ∴∠EAH=∠BAD=45°,
    ∵∠HGA=90°,
    ∴GA=GH;
    (2)解:如图1,连接DH,DF,交AH于点N,
    由(1)可知AF=AD,∠FAH=∠DAH,

    ∴AH⊥DF,FN=DN,
    ∴DH=HF,∠FNH=∠DNH=90°,
    又∵∠GHA=45°,
    ∴∠FNH=45°=∠NDH=∠DHN,
    ∴∠DHF=90°,
    ∴DH的长为点D到直线BH的距离,
    由(1)知AE2=AB2+BE2,
    ∴AE===,
    ∵∠BAE+∠AEB=∠BAE+∠ABG=90°,
    ∴∠AEB=∠ABG,
    又∠AGB=∠ABE=90°,
    ∴△AEB∽△ABG,
    ∴,,
    ∴AG==,
    ∴BG=,
    由(1)知GF=BG,AG=GH,
    ∴GF=,GH=,
    ∴DH=FH=GH﹣GF==.
    即点D到直线BH的距离为;
    (3)不变.
    理由如下:
    方法一:连接BD,如图2,

    在Rt△HDF中,,
    在Rt△BCD中,=sin45°=,
    ∴,
    ∵∠BDF+∠CDH=45°,∠FDC+∠CDH=45°,
    ∴∠BDF=∠CDH,
    ∴△BDF∽△CDH,
    ∴∠CDH=∠BFD,
    ∵∠DFH=45°,
    ∴∠BFD=135°=∠CHD,
    ∵∠BHD=90°,
    ∴∠BHC=∠CHD﹣∠BHD=135°﹣90°=45°.
    方法二:
    ∵∠BCD=90°,∠BHD=90°,
    ∴点B,C,H,D四点共圆,
    ∴∠BHC=∠BDC=45°,
    ∴∠BHC的度数不变.


    相关试卷

    2023年山东省临沂市中考数学真题试卷(解析版): 这是一份2023年山东省临沂市中考数学真题试卷(解析版),共22页。试卷主要包含了 下列运算正确的是, 设,则实数m所在的范围是等内容,欢迎下载使用。

    2023年山东省临沂市中考数学真题试卷: 这是一份2023年山东省临沂市中考数学真题试卷,共11页。试卷主要包含了 下列运算正确的是, 设,则实数m所在的范围是等内容,欢迎下载使用。

    精品解析:2023年山东省临沂市中考数学真题(解析版): 这是一份精品解析:2023年山东省临沂市中考数学真题(解析版),共21页。试卷主要包含了 下列运算正确的是, 设,则实数m所在的范围是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2021年山东省临沂市中考数学真题试卷 解析版
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map