所属成套资源:高考数学一轮复习作业本 (含答案)
高考数学一轮复习作业本10.1 计数原理与排列组合(含答案)
展开
这是一份高考数学一轮复习作业本10.1 计数原理与排列组合(含答案),共5页。
2020高考数学(理数)复习作业本10.1 计数原理与排列组合一 、选择题1.由数字0,1,2,3,4,5组成没有重复数字的五位数,其中个位数字小于十位数字的只有( )A.210个 B.300个 C.464个 D.600个 2.从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a,b,共可得到lga-lgb的不同值的个数是( )A.9 B.10 C.18 D.20 3.直线方程Ax+By=0,若从0,1,2,3,5,7这6个数字中每次取两个不同的数作为A,B的值,则可表示________条不同的直线( )A.19 B.20 C.21 D.22 4.某班有男生26人,女生24人,从中选一位同学为数学课代表,则不同选法的种数有( )A.50 B.26 C.24 D.616 5.计算:=( )A.12 B.24 C.30 D.36 6.从1,2,3,4中,任取两个不同数字组成平面直角坐标系中一个点的坐标,则组成不同点的个数为( )A.2 B.4 C.12 D.24 7.若从6名志愿者中选出4名分别从事翻译、导游、导购、保洁四项不同的工作,则选派方案有( )A.180种 B.360种 C.15种 D.30种 8.有4名司机、4名售票员分配到4辆汽车上,使每辆汽车上有一名司机和一名售票员,则可能的分配方案有( )A.A种 B.A种 C.AA种 D.2A种 二 、填空题9.某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了 条毕业留言.(用数字作答) 10.从3,5,7,11这四个数中任取两个相乘,可以得到不相等的积的个数为________. 11.把5件不同产品摆成一排,若产品A与产品B相邻, 且产品A与产品C不相邻,则不同的摆法有________种. 12.用0,1,2,3,4这5个数字组成无重复数字的五位数,其中恰有一个偶数夹在两个奇数之间的五位数有______种. 三 、解答题13.一场晚会有5个演唱节目和3个舞蹈节目,要求排出一个节目单.(1)3个舞蹈节目不排在开始和结尾,有多少种排法?(2)前4个节目要有舞蹈节目,有多少种排法? 14.写出下列问题的所有排列.(1)甲、乙、丙、丁四名同学站成一排;(2)从编号为1,2,3,4,5的五名同学中选出两名同学任正、副班长. 15.某次足球赛共12支球队参加,分三个阶段进行.(1)小组赛:经抽签分成甲、乙两组,每组6队进行单循环比赛,以积分及净胜球数取前两名;(2)半决赛:甲组第一名与乙组第二名,乙组第一名与甲组第二名进行主客场交叉淘汰赛(每两队主客场各赛一场)决出胜者;(3)决赛:两个胜队参加决赛一场,决出胜负.全部赛程共需比赛多少场? 16.已知10件不同的产品中有4件是次品,现对它们进行测试,直至找出所有次品为止.(1)若恰在第5次测试才测试到第1件次品,第10次才找到最后一件次品,则这样的不同测试方法数是多少?(2)若恰在第5次测试后就找出了所有次品,则这样的不同测试方法数是多少?
答案解析1.B.解析:没有重复数字五位数有5×A=600(个),个位数字小于十位数字有=300(个). 2.C.解析:首先从1,3,5,7,9这五个数中任取两个不同的数排列,共有A=20(种)排法,因为=,=,所以从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lga-lgb的不同值的个数是20-2=18. 3.D.解析:若A或B中有一个为零时,有2条;当AB≠0时,有5×4=20条,则共有20+2=22条,即所求的不同的直线共有22条.故选D. 4.A.解析:根据分类加法计数原理,因数学课代表可为男生,也可为女生,因此选法共有26+24=50(种),故选A. 5.D.解析: A=7×6×A,A=6×A,所以原式==36. 6.C.解析:本题相当于从4个元素中取2个元素的排列,即A=12. 7.B.解析:由排列定义知选派方案有A=6×5×4×3=360(种).8.C.[解析]安排4名司机有A种方案,安排4名售票员有A种方案.司机与售票员都安排好,这件事情才算完成,由分步乘法计数原理知共有AA种方案. 9.答案为:1 560;[解析]同学两两彼此给对方写一条毕业留言相当于从40人中任选两人的排列数,所以全班共写了A=40×39=1 560条毕业留言. 10.答案:6.解析:从四个数中任取两个数的取法为C=6.11.答案:36.解析:先考虑产品A与B相邻,把A、B作为一个元素有A种方法,而A、B可交换位置,所以摆法有2A=48(种).又当A、B相邻又满足A、C相邻,摆法有2A=12(种).故满足条件的摆法有48-12=36(种). 12.答案:28.解析:0夹在1,3之间有AA种排法,0不夹在1,3之间又不在首位有AAAA种排法.所以一共有AA+AAAA=28种排法. 13.解:(1)先从5个演唱节目中选两个排在首尾两个位置有A种排法,再将剩余的3个演唱节目,3个舞蹈节目排在中间6个位置上有A种排法,故共有不同排法AA=1 440(种).(2)先不考虑排列要求,有A种排列,其中前4个节目没有舞蹈节目的情况,可先从5个演唱节目中选4个节目排在前四个位置,然后将剩余四个节目排列在后四个位置,有AA种排法,所以前四个节目要有舞蹈节目的排法有A-AA=37 440(种). 14.解:(1)四名同学站成一排,共有A=24个不同的排列,它们是:甲乙丙丁,甲乙丁丙,甲丙乙丁,甲丙丁乙,甲丁乙丙,甲丁丙乙;乙甲丙丁,乙甲丁丙,乙丙甲丁,乙丙丁甲,乙丁甲丙,乙丁丙甲;丙甲乙丁,丙甲丁乙,丙乙甲丁,丙乙丁甲,丙丁甲乙,丙丁乙甲;丁甲乙丙,丁甲丙乙,丁乙甲丙,丁乙丙甲,丁丙甲乙,丁丙乙甲.(2)从五名同学中选出两名同学任正、副班长,共有A=20种选法,形成的排列是:12,13,14,15,21,23,24,25,31,32,34,35,41,42,43,45,51,52,53,54. 15.解:(1)小组赛中每组6队进行单循环比赛,就是6支球队的任两支球队都要比赛一次,所需比赛的场次即为从6个元素中任取2个元素的组合数,所以小组赛共要比赛2C=2×=30(场).(2)半决赛中甲组第一名与乙组第二名(或乙组第一名与甲组第二名)主客场各赛一场,所需比赛的场次即为从2个元素中任取2个元素的排列数,所以半决赛共要比赛2A=2×1×2=4(场).(3)决赛只需比赛1场,即可决出胜负.所以全部赛程共需比赛30+4+1=35(场). 16.解:
相关试卷
这是一份高考数学一轮复习检测:第10章第1节 计数原理与排列组合 含解析,共6页。
这是一份2024年(新高考)高考数学一轮复习突破练习10.1《分类加法计数原理与分步乘法计数原理》(含详解),共5页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
这是一份(新高考)高考数学一轮复习分层突破练习10.1《分类加法计数原理与分步乘法计数原理》(含详解),共7页。