|试卷下载
终身会员
搜索
    上传资料 赚现金
    山东省临沂市沂南县2022-2023学年八年级下学期期末数学试卷(含答案)
    立即下载
    加入资料篮
    山东省临沂市沂南县2022-2023学年八年级下学期期末数学试卷(含答案)01
    山东省临沂市沂南县2022-2023学年八年级下学期期末数学试卷(含答案)02
    山东省临沂市沂南县2022-2023学年八年级下学期期末数学试卷(含答案)03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省临沂市沂南县2022-2023学年八年级下学期期末数学试卷(含答案)

    展开
    这是一份山东省临沂市沂南县2022-2023学年八年级下学期期末数学试卷(含答案),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年山东省临沂市沂南县八年级(下)期末数学试卷
    一、选择题(本大题共12小题,共36.0分。在每小题列出的选项中,选出符合题目的一项)
    1. 计算23×6的结果是(    )
    A. 2 B. 2 C. 3 D. 4
    2. 劳动教育是学校贯彻“五育并举”的重要举措,某校倡议学生在家做一些力所能及的家务劳动,李老师为了解学生每周参加家务劳动的时间,随机调查了本班6名学生,收集到如下数据:6,3,5,4,3,3,则这组数据的众数和中位数是(    )
    A. 3和3 B. 3和4.5 C. 3和3.5 D. 4和3.5
    3. 一次函数y=-23x+3的图象不经过的象限是(    )
    A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
    4. 在学校举办的“诗词大赛”中,有9名选手进入决赛,他们的决赛成绩各不相同,其中一名选手想知道自己是否能进入前5名,除了知道自己的成绩外,他还需要了解这9名学生成绩的(    )
    A. 中位数 B. 平均数 C. 众数 D. 方差
    5. 如图,在3×3的正方形网格中,每个小正方形边长为1,点A,B,C,D均为格点,以A为圆心,AB长为半径作弧,交网格线CD于点E,则C,E两点间的距离为(    )


    A. 3 B. 3-3 C. 3+12 D. 3-12
    6. 某快递员十二月份送餐统计数据如表:
    送餐距离
    小于等于3公里
    大于3公里
    占比
    70%
    30%
    送餐费
    4元/单
    6元/单
    则该快递员十二月份平均每单送餐费是(    )
    A. 4.6元 B. 4.8元 C. 5元 D. 5.2元
    7. 小明在游乐场坐过山车,在某一段60秒时间内过山车的高度h(米)与时间t(秒)之间的函数关系图象如图所示,下列结论错误的是(    )

    A. 当t=41时,h=15
    B. 过山车距水平地面的最高高度为98米
    C. 在0≤t≤60范围内,当过山车高度是80米时,t的值只能等于30
    D. 当41 8. 甲、乙两名同学在相同条件下6次射击训练的成绩(单位:环)如图所示.则下列叙述正确的是(    )

    A. 甲的平均数大,甲的方差大 B. 甲的平均数大,乙的方差大
    C. 乙的平均数大,甲的方差大 D. 乙的平均数大,乙的方差大
    9. 在平行四边形的复习课上,小明绘制了如下知识框架图,箭头处添加条件错误的是(    )


    A. ①:对角线相等 B. ②:对角互补
    C. ③:一组邻边相等 D. ④:有一个角是直角
    10. 如图,有一个球形容器,小海在往容器里注水的过程中发现,水面的高度h、水面的面积S及注水量V是三个变量.下列有四种说法:
    ①S是V的函数;②V是S的函数;③h是S的函数,④S是h的函数.
    其中所有正确结论的序号是(    )



    A. ①③
    B. ①④
    C. ②③
    D. ②④
    11. 如图▱ABCD中,要在对角线BD上找两点E,F,使四边形AECF为平行四边形,现有甲、乙、丙三种方案,
    甲:只需要满足BF=DE
    乙:只需要满足AE=CF
    丙:只需要满足AE/​/CF
    则正确的方案是(    )
    A. 甲、乙、丙都是 B. 只有甲、丙才是 C. 只有甲、乙才是 D. 只有乙、丙才是
    12. 现有甲、乙两个长方体蓄水池,将甲池中的水匀速注入乙池,如图是甲、乙两个蓄水池中水的高度y甲(单位:米),y乙(单位:米)随注水时间x(单位:小时)变化的图象.当甲、乙两池水的高度相同时,其相同的高度是(    )
    A. 2.4米
    B. 2.8米
    C. 3米
    D. 3.2米
    二、填空题(本大题共4小题,共12.0分)
    13. 化简:92=______ .
    14. 若直线y=x向上平移3个单位长度后经过点(2,m),则m的值为______ .
    15. 生物学研究表明,植物光合作用速率越高,单位时间内合成的有机物越多.为了解甲、乙两个品种大豆的光合作用速率,科研人员从甲、乙两个品种的大豆中各选五株,在同等实验条件下,测量它们的光合作用速率(单位:μmol⋅m-2⋅s-1),结果统计如下:
    品种
    第一株
    第二株
    第三株
    第四株
    第五株
    平均数

    32
    30
    25
    18
    20
    25

    28
    25
    26
    24
    22
    25
    则两个大豆品种中光合作用速率更稳定的是______(填“甲”或“乙”).


    16. 如图,在菱形ABCD中,∠DAB=40°,连接AC,以点A为圆心,AC长为半径作弧,交直线AD于点E,连接CE,则∠AEC的度数是______ .

    三、解答题(本大题共7小题,共72.0分。解答应写出文字说明,证明过程或演算步骤)
    17. (本小题10.0分)
    计算:
    (1)16×96÷6;
    (2)80-8-45+412.
    18. (本小题8.0分)
    如图,在平行四边形ABCD中,点M,N分别在边AB,CD上,且AM=CN.求证:DM=BN.

    19. (本小题10.0分)
    2023年临沂市初中毕业生体育学业水平考试中,某校九年(8)班30名学生的考试成绩统计如下.若成绩在59分及以上的属于优秀.
    成绩(分))
    60
    59
    58
    57
    56
    55
    54
    人数(人))
    10
    5
    7
    5
    2
    0
    1
    (1)求九年(8)班学生体育学业水平考试成绩的平均数、中位数和优秀率.
    (2)九年(7)班30名学生的本次考试成绩的平均数为58分,中位数为58.5分,优秀率为60%,请结合上述统计量进行比较分析,从不同角度衡量两个班级的体育学业模拟考试成绩的水平.
    20. (本小题10.0分)
    如图,在平面直角坐标系xOy中,直线y=-2x+4与x轴,y轴分别交于点A,点B.
    (1)求点A和点B的坐标;
    (2)点M为y轴上的一点,并且三角形MAB面积为6.请求出点M坐标;
    (3)在(2)问的基础上,求出直线AM的解析式.

    21. (本小题10.0分)
    某中学的国旗护卫队需从甲、乙两队中选择一队身高比较整齐的队员担任护旗手,两队中每个队员的身高(单位:cm)如下:
    甲队
    178
    177
    179
    179
    178
    178
    177
    178
    177
    179
    乙队
    176
    177
    178
    178
    176
    178
    178
    179
    180
    180
    两组样本数据的平均数、中位数、众数、方差如表所示:

    平均数
    中位数
    众数
    方差
    甲队
    178
    178
    b
    0.6
    乙队
    178
    a
    178
    c
    (1)表中a=______ ,b=______ ;
    (2)请计算乙队身高的方差;
    (3)根据表格中的数据,你认为选择哪队比较好?请说明理由.
    22. (本小题12.0分)
    如图,在正方形ABCD中,G是对角线BD上的一点(与点B,D不重合),GE⊥CD,GF⊥BC,E,F分别为垂足.连接EF,AG,并延长AG交EF于点H.
    (1)求证:∠DAG=∠EGH;
    (2)判断AH与EF是否垂直,并说明理由.

    23. (本小题12.0分)
    小明观察到一个水龙头因损坏而不断地向外滴水,为探究其漏水造成的浪费情况,小明用一个带有刻度的量筒放在水龙头下面装水,每隔一分钟记录量筒中的总水量,但由于操作延误,开始计时的时候量筒中已经有少量水,因而得到如表的一组数据:
    时间t(分钟)
    1
    2
    3
    4
    5

    总水量y(毫升)
    7
    12
    17
    22
    27

    (1)探究:根据上表中的数据,请判断总水量y与时间t的符合怎样的函数关系?并求出y关于t的表达式;
    (2)应用:
    ①请你估算小明在第20分钟测量时量筒的总水量是多少毫升?
    ②一个人一天大约饮用1500毫升水,请你估算这个水龙头一个月(按30天计)的漏水量可供一人饮用多少天.
    答案和解析

    1.【答案】B 
    【解析】解:23×6
    =23×6=4
    =2,
    故选:B.
    根据二次根式的乘除法法则进行计算即可.
    本题考查了二次根式的乘除法,熟练掌握二次根式的乘除法法则是解题的关键.

    2.【答案】C 
    【解析】解:将这组数据重新排列为3,3,3,4,5,6,
    所以这组数据的众数为3,中位数为3+42=3.5,
    故选:C.
    根据众数和中位数的定义求解即可.
    本题主要考查众数和中位数,解题的关键是掌握众数和中位数的定义.

    3.【答案】C 
    【解析】解:∵y=-23x+3中,k=-23<0,
    ∴必过第二、四象限,
    ∵b=3>0,
    ∴交y轴于正半轴.
    ∴函数图象过第一、二、四象限,不过第三象限,
    故选:C.
    首先根据k的符号确定函数图象必过第二、四象限,再确定b,看与y轴交点,即可得到答案.
    此题主要考查了一次函数的性质,熟知函数图象与系数的关系是解题的关键.

    4.【答案】A 
    【解析】解:由于总共有9个人,且他们的分数互不相同,第5名的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.
    故选:A.
    9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
    此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.

    5.【答案】B 
    【解析】解:如图:连接AE,则AE=2,AD=1,
    ∴DE=AE2-AD2=22-12=3,
    ∴CE=CD-DE=3-3.
    故选B.
    如图:连接AE,则AE=2、AD=1,由勾股定理可求出DE,然后运用线段的和差即可解答.
    本题主要考查了勾股定理的应用以及线段的和差,根据题意运用勾股定理求得DE是解答本题的关键.

    6.【答案】A 
    【解析】解:该快递员十二月份平均每单送餐费是:4×70%+6×30%=4.6(元),
    故选:A.
    根据加权平均数的公式计算,即可求解.
    本题主要考查了求加权平均数,熟练掌握加权平均数的公式是解题的关键.

    7.【答案】C 
    【解析】解:A.由图象可知,当t=41秒时,h的值是15米,故本选项不合题意;
    B.由图象可知,过山车距水平地面的最高高度为98米,故本选项不合题意;
    C.由图象可知,在0≤t≤60范围内,当过山车高度是80米时,t的值有3个,原说法错误,故本选项符合题意;
    D.由图象可知,当41 故选:C.
    A选项根据某一分钟内过山车高度h(米)与时间t(秒)之间的函数图象,即可得出当t=41秒时,h的值;B选项根据图象判断即可;C选项结合图象可得在这1分钟内,有4个时间点,过山车高度是80米;D选项通过函数图象的增减性判断即可.
    本题考查了函数的图象,解决本题的关键是利用数形结合思想.

    8.【答案】A 
    【解析】解:甲的平均数=(6+7+10+8+9+10)÷6=253,乙的平均数=(8+9+8+7+8+8)÷6=8,
    从折线图可以看出甲的波动比乙的大,所以甲的方差大.
    故选:A.
    根据平均数的概念计算出平均数,从折线图可以看出甲的波动比乙的大,所以甲的方差大.
    本题主要考查折线统计图,算术平均数,方差的知识,熟练根据折线统计图获取相应的数据是解题的关键.

    9.【答案】B 
    【解析】解:A、对角线相等的平行四边形是矩形,故A正确,不符合题意;
    B、对角互补的矩形不一定是正方形,错误,故B符合题意;
    C、一组邻边相等的平行四边形是菱形,正确,故C不符合题意;
    D、有一个角是直角的菱形是正方形,正确,故D不符合题意.
    故选:B.
    由矩形,菱形,正方形的判定,即可判断.
    本题考查矩形,菱形,正方形的判定,关键是熟练掌握矩形,菱形,正方形的判定方法.

    10.【答案】B 
    【解析】解:因为这是球形容器,
    ①S是V的函数,故符合题意,
    ②V不是S的函数,故不符合题意,
    ③h不是S的函数,故不符合题意,
    ④S是h的函数.故符合题意.
    故选:B.
    根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可判断函数.
    本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量,根据球形容器,水面的高度h和注水量V对应有两个水面的面积S是解题的关键.

    11.【答案】B 
    【解析】解:∵四边形ABCD是平行四边形,
    ∴AB/​/CD,AB=CD,
    ∴∠ABE=∠CDF,
    甲:∵BF=DE,
    ∴BF-EF=DE-EF,
    ∴BE=DF,
    在△ABE和△CDF中,
    AB=CD∠ABE=∠CDFBE=DF,
    ∴△ABE≌△CDF(SAS),
    ∴AE=CF,∠AEB=∠CFD,
    ∴∠AEF=∠CFE,
    ∴AE//CF,
    ∴四边形AECF为平行四边形,故甲正确;
    乙:由AE=CF,不能证明△ABE≌△CDF,不能使四边形AECF为平行四边形,故乙不正确;
    丙:∵AE/​/CF,
    ∴∠AEF=∠CF,
    ∴∠AEB=∠CFDE,
    在△ABE和△CDF中,
    ∠AEB=∠CFD∠ABE=∠CDFAB=CD,
    ∴△ABE≌△CDF(AAS),
    ∴AE=CF,
    ∴四边形AECF为平行四边形,故丙正确;
    故选:B.
    只要证明△ABE≌△CDF,即可解决问题.
    本题考查了平行四边形的性质与判定,三角形全等的性质与判定,掌握以上知识是解题的关键.

    12.【答案】D 
    【解析】解:设y1为甲池中的水深度与注水时间x之间的函数表达式是y1=k1x+b1,
    ∴b1=43k1+b1=0,
    解得k1=-43b1=4,
    即y1=-43x+4,
    设y2乙池中的水深度与注水时间x之间的函数表达式是y2=k2x+b2,
    ∴b2=23k2+b2=8,
    解得k2=2b2=2,
    即y2=2x+2 (0≤x≤3);
    令y1=y2,则-43x+4=2x+2,
    解得x=35,
    y=2×35+2=3.2,
    ∴当甲、乙两池水的高度相同时,其相同的高度是3.2米.
    故选:D.
    根据函数图象中的数据可以求得相应的函数解析式;联立两个函数解析式,即可求交点P的坐标,点P的纵坐标即为所求.
    本题考查一次函数的应用,涉及待定系数法求一次函数表达式,一次函数的交点问题等内容;解答本题的关键是明确题意,求出相应的函数解析式,利用一次函数的性质解答.

    13.【答案】322 
    【解析】解:92=92=32=322.
    故答案为:322.
    利用二次根式的性质和除法法则计算即可.
    本题考查了二次根式的性质和除法法则,掌握二次根式的性质和除法法则是解题的关键.

    14.【答案】5 
    【解析】解:将直线y=x向上平移3个单位,得到直线y=x+3,
    把点(2,m)代入,得m=2+3=5.
    故答案为:5.
    先根据平移规律求出直线y=x向上平移3个单位的直线解析式,再把点(2,m)代入,即可求出m的值.
    本题考查了一次函数图象与几何变换,一次函数图象上点的坐标特征,正确求出平移后的直线解析式是解题的关键.

    15.【答案】乙 
    【解析】解:甲的方差为:S甲2=15[(32-25)2+(30-25)2+(25-25)2+(18-25)2+(20-25)2]=29.6;
    乙的方差为:S乙2=15[(28-25)2+(25-25)2+(26-25)2+(24-25)2+(22-25)2]=4.
    ∵29.6>4,
    ∴两个大豆品种中光合作用速率更稳定的是乙.
    故答案为:乙.
    直接利用方差公式,进而计算得出答案.
    此题考查了方差、平均数,一般地设n个数据,x1,x2,…xn的平均数为x-,则方差S2=1n[(x1-x-)2+(x2-x-)2+…+(xn-x-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.

    16.【答案】10°或80° 
    【解析】解:以点A为圆心,AC长为半径作弧,交直线AD于点E和E',如图所示,
    在菱形ABCD中,∠DAC=∠BAC,
    ∵∠DAB=40°,
    ∴∠DAC=20°,
    ∵AC=AE,
    ∴∠AEC=(180°-20°)÷2=80°,
    ∵AE'=AC,
    ∴∠AE'C=∠ACE'=10°,
    综上所述,∠AEC的度数是10°或80°,
    故答案为:10°或80°.
    根据菱形的性质可得∠DAC=20°,再根据等腰三角形的性质可得∠AEC的度数.
    本题考查了菱形的性质,等腰三角形的性质,熟练掌握这些性质是解题的关键.

    17.【答案】解:(1)16×96÷6
    =16×96÷6=16÷6=83=243
    =263;
    (2)80-8-45+412=45-22-35+22
    =5. 
    【解析】(1)根据二次根式的乘除法法则即可求解;
    (2)根据二次根式的性质化简,再算加减法即可求解.
    本题主要考查二次根式的混合运算,掌握二次根式的性质和混合运算的法则是解题的关键.

    18.【答案】证明:∵四边形ABCD是平行四边形,
    ∴AB/​/CD,AB=CD,
    ∵AM=CN,
    ∴AB-AM=CD-CN,
    即BM=DN,
    又∵BM/​/DN,
    ∴四边形MBND是平行四边形,
    ∴DM=BN. 
    【解析】由平行四边形的性质得AB/​/CD,AB=CD,再证BM=DN,然后由平行四边形的判定即可得出结论.
    本题考查了平行四边形的判定与性质,熟练掌握平行四边形的性质,证明BM=DN是解题的关键.

    19.【答案】解:(1)平均数x-=60×10+59×5+58×7+57×5+56×2+54×130=58.4(分),
    将这30名学生成绩从小到大排列,处在中间位置的两个数的平均数为58+592=58.5(分),因此中位数是58.5,
    优秀率为(10+5)÷30×100%=50%,
    答:平均数是58.4分,中位数是58.5分,优秀率为50%;
    (2)从平均数上看,九(7)比九(8)低,九(8)班的成绩较好;从优秀率上看,九(7)比九(8)的高,九(7)班的成绩较好. 
    【解析】(1)根据中位数、平均数、优秀率的计算方法进行计算即可;
    (2)从平均数,优秀率的大小比较得出答案.
    本题考查中位数、众数、平均数,掌握平均数、中位数、众数的计算方法是正确解答的前提,理解平均数、中位数、众数的定义是正确判断的关键.

    20.【答案】解:(1)令x=0,则y=4,
    ∴直线y=-2x+4与y轴的交点B的坐标为(0,4),
    令y=0,则-2x+4=0,
    ∴x=2,
    ∴直线y=-2x+4与x轴的交点A的坐标为(2,0),
    ∴点A的坐标为(2,0),点B的坐标为(0,4);
    (2)∵点M为y轴上的一点,
    ∴设点M的坐标为(0,y),
    由题意得:S△MAB=12MB⋅OA,
    即12|4-y|×2=6,
    解得:y=-2或y=10,
    ∴点M的坐标为(0,-2)或(0,10);
    (3)当直线AM过点A(2,0),M(0,-2)时,
    设直线AM的解析式为y=kx+b,
    ∴2k+b=0b=-2,
    解得:k=1b=-2,
    ∴直线AM的解析式为y=x-2;
    当直线AM过点A(2,0),M(0,10)时,
    设直线AM的解析式为y=mx+n,
    ∴2m+n=0n=10,
    解得:m=-5n=10,
    ∴直线AM的解析式为y=-5x+10;
    综上,直线AM的解析式为y=x-2或y=-5x+10. 
    【解析】(1)令x=0,求出y的值,得到直线与y轴的交点B的坐标;令y=0,求出x的值,得到直线与x轴的交点A的坐标;
    (2)设点M的坐标为(0,y),根据三角形面积公式列出方程,求出y的值,从而得到点M的坐标;
    (3)利用待定系数法求出直线AM的解析式.
    本题主要考查了用待定系数法求一次函数的解析式,直线与坐标轴的交点坐标的求法,利用三角形的面积求点的坐标,熟练掌握用待定系数法求解析式.

    21.【答案】178  178 
    【解析】解:(1)甲队队员身高出现次数最多的是178cm,因此众数是178cm,即b=178;
    乙队10名队员的身高从小到大排列,处在中间位置的两个数都是178cm,因此中位数是178cm,即b=178;
    故答案为:178,178;
    (2)S乙2=110[(176-178)2×2+(177-178)2+(179-178)2+(180-178)2×2]=1.8,
    答:乙队身高的方差是1.8;
    (3)选择甲队比较好,理由:甲、乙两队队员的身高的平均数、中位数、众数均相同,但甲队身高的方差较小,说明甲队队员的身高比较整齐.
    (1)根据中位数、众数的定义进行解答即可;
    (2)根据方差的计算方法进行计算即可;
    (3)从方差的角度分析得出结论.
    本题考查平均数、中位数、众数、方差,掌握中位数、众数、方差的计算方法是正确解答的前提.

    22.【答案】(1)证明:在正方形ABCD中,AD⊥CD,GE⊥CD,
    ∴∠ADE=∠GEC=90°,
    ∴AD/​/GE,
    ∴∠DAG=∠EGH.
    (2)解:AH⊥EF,理由如下.
    连结GC交EF于点O,如图:

    ∵BD为正方形ABCD的对角线,
    ∴∠ADG=∠CDG=45°,
    又∵DG=DG,AD=CD,
    ∴△ADG≌△CDG(SAS),
    ∴∠DAG=∠DCG.
    在正方形ABCD中,∠ECF=90°,
    又∵GE⊥CD,GF⊥BC,
    ∴四边形FCEG为矩形,
    ∴OE=OC,
    ∴∠OEC=∠OCE,
    ∴∠DAG=∠OEC,
    由(1)得∠DAG=∠EGH,
    ∴∠EGH=∠OEC,
    ∴∠EGH+∠GEH=∠OEC+∠GEH=∠GEC=90°,
    ∴∠GHE=90°,
    ∴AH⊥EF. 
    【解析】(1)直接由平行公理的推理即可解答.
    (2)先连接CG,然后根据正方形的性质得出△ADG≌△CDG,从而得到∠DAG=∠DCG.再证明∠EGH=∠DCG=∠OEC即可.
    本题考查正方形的性质与全等三角形的性质,熟悉性质是解题关键.

    23.【答案】解:(1)观察表格可知,y与t符合一次函数关系,
    设y=kt+b,把(1,7),(2,12)代入得:
    k+b=72k+b=12,
    解得k=5b=2,
    ∴y=5t+2;
    (2)①当t=20时,y=5×20+2=122,
    ∴在第20分钟测量时量筒的总水量是122毫升;
    ②由(1)知,这个水龙头每分钟漏水5毫升,
    ∴30天漏水5×60×24×30=216000(毫升),
    ∵216000÷1500=144(天),
    ∴这个水龙头一个月的漏水量可供一人饮用144天. 
    【解析】(1)观察表格可知,y与t符合一次函数关系,用待定系数法可得y=5t+2;
    (2)①当t=20时,可得在第20分钟测量时量筒的总水量是122毫升;
    ②列式计算可得这个水龙头一个月的漏水量可供一人饮用144天.
    本题考查一次函数的应用,解题的关键是读懂题意,列出函数关系式.

    相关试卷

    2022-2023学年山东省临沂市沂南县八年级(下)期中数学试卷(含解析): 这是一份2022-2023学年山东省临沂市沂南县八年级(下)期中数学试卷(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    山东省临沂市沂南县2022-2023学年八年级下学期期末数学试卷(含答案): 这是一份山东省临沂市沂南县2022-2023学年八年级下学期期末数学试卷(含答案),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年山东省临沂市沂南县八年级(上)期末数学试卷(含解析): 这是一份2022-2023学年山东省临沂市沂南县八年级(上)期末数学试卷(含解析),共14页。试卷主要包含了 剪纸是我国古老的民间艺术, 下列运算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map