|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022-2023学年广东省佛山市顺德区八年级(下)期末数学试卷(含解析)
    立即下载
    加入资料篮
    2022-2023学年广东省佛山市顺德区八年级(下)期末数学试卷(含解析)01
    2022-2023学年广东省佛山市顺德区八年级(下)期末数学试卷(含解析)02
    2022-2023学年广东省佛山市顺德区八年级(下)期末数学试卷(含解析)03
    还剩15页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022-2023学年广东省佛山市顺德区八年级(下)期末数学试卷(含解析)

    展开
    这是一份2022-2023学年广东省佛山市顺德区八年级(下)期末数学试卷(含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年广东省佛山市顺德区八年级(下)期末数学试卷
    一、选择题(本大题共10小题,共30.0分。在每小题列出的选项中,选出符合题目的一项)
    1. 下列图形是中心对称图形的是(    )
    A. 平行四边形 B. 直角三角形 C. 等边三角形 D. 正五边形
    2. 已知x>y,下列不等式正确的是(    )
    A. −3x>−3y B. x−a2y
    3. 如图,在△ABC中,D、E分别是AB、AC的中点,若DE=5,则BC=(    )


    A. 6 B. 8 C. 10 D. 12
    4. 若分式x+2x的值为零,则x等于(    )
    A. −2 B. 0 C. 2 D. 0和−2
    5. 如图,将△ABC绕点A逆时针旋转90°得到△ADE,连接BD,则∠ABD的度数为(    )
    A. 30°
    B. 45°
    C. 55°
    D. 60°
    6. 如图,在▱ABCD中,AD=12,AC=26,∠ADB=90°,则AD与BC间的距离为(    )

    A. 5 B. 10 C. 2 61 D. 26
    7. 已知ab=6,a+b=7,那么代数式a2b+ab2的值为(    )
    A. 6 B. 7 C. 13 D. 42
    8. 如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点E,交BC于点F,连接AF.若∠BAC=112°,则∠AFC=(    )

    A. 34° B. 62° C. 68° D. 70°
    9. 点O是四边形ABCD对角线的交点,给出下列四个条件:①AB//CD,AD=BC;②AB=CD,AD=BC;③OA=OC,OB=OD;④AB=BC,AD=CD,能判定四边形ABCD是平行四边形的有(    )
    A. ①② B. ③④ C. ②③ D. ①④
    10. 关于x的分式方程x+1x−1−4x2−1=1的增根为(    )
    A. 1 B. −1 C. ±1 D. 不存在
    二、填空题(本大题共5小题,共15.0分)
    11. 在平行四边形ABCD中,∠A=50°,则∠C=______°.
    12. 七边形内角和的度数是______.
    13. 不等式的解集如图所示,写出一个符合要求的不等式:______ .


    14. 关于x的不等式2x−a>0的解集为x>4,则a的值是______ .
    15. 已知a,b,c是△ABC的三边,且满足a2−b2+ac−bc=0,则△ABC是 ______ .(等腰三角形,等边三角形,直角三角形,等腰直角三角形).
    三、解答题(本大题共9小题,共75.0分。解答应写出文字说明,证明过程或演算步骤)
    16. (本小题6.0分)
    解不等式组:−2x<62x+43<3−x.
    17. (本小题6.0分)
    如图,在平面直角坐标系中,线段AB两端点的坐标分别为A(1,1)、B(2,4),平移线段AB,使得点A移到点A1(5,2),连接AA1、BB1,写出点B1的坐标,判断四边形ABB1A1的形状并说明理由.

    18. (本小题6.0分)
    如图,在▱ABCD中,∠BAD、∠BCD的平分线分别交对角线BD于点E、F.求证:AE=CF.


    19. (本小题8.0分)
    先化简,再求值:a2+aa2+2a+1−a−1a2−1,a是在−2 20. (本小题8.0分)
    某商店购买甲、乙两种商品,购买1个甲商品比购买1个乙商品多花15元,并且花费400元购买甲商品和花费100元购买乙商品的数量相等.求购买1个甲商品和1个乙商品各需多少元?
    21. (本小题8.0分)
    如图,AD是△ABC的平分线,且BD=CD,DE⊥AB,DF⊥AC,垂足分别为E、F.
    (1)求证:△ABC是等腰三角形;
    (2)若AB=4,∠B=60°,求点D到AB的距离.

    22. (本小题10.0分)
    如图,在△ABC中,AC=BC,∠C=90°,点D、E分别在BC、AB上.给出下列三个信息:①AD是角平分线:②DE⊥AB;③CD=BE.请选择其中两个作为条件,第三个作为结论构成一个真命题并证明.

    23. (本小题10.0分)
    如图,已知函数y1=−x+b,y2=mx−1,其中y1的图象经过点(3,0).
    (1)当y1>0时,x的取值范围是______ ;
    (2)当x>2时,对于x的每一个值,都有y1 (3)若m=1,3x+1(3−x)(x−1)=Ay1+By2,求A、B的值.

    24. (本小题13.0分)
    如图,△ABC是等边三角形,AB= 3,点F是∠BAC的平分线上一动点,将线段AF绕点A顺时针方向旋转60°得到AE,连接CF、EF.
    (1)尺规作图:在AF的上方找点D,使得DE⊥AF且DE=AC;
    (2)在(1)的条件下,连接CD、DF.
    ①求证:AE+CD>AC;
    ②求证:△CDF是等边三角形;
    ③当△DEF是等腰三角形时,求AF的长度?


    答案和解析

    1.【答案】A 
    【解析】解:A、是中心对称图形.故正确;
    B、不是中心对称图形.故错误;
    C、不是中心对称图形.故错误;
    D、不是中心对称图形.故错误.
    故选:A.
    根据中心对称图形的概念求解.
    本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.

    2.【答案】D 
    【解析】解:A.根据不等式的性质,由x>y得−3x<−3y,故A不符合题意.
    B.根据不等式的性质,由x>y得x−a>y−a,故B不符合题意.
    C.根据不等式的性质,由x>y得x2>y2,故C不符合题意.
    D.根据不等式的性质,由x>y,那么2x>2y,故D符合题意.
    故选:D.
    根据不等式的性质解决此题.
    本题主要考查不等式的性质,熟练掌握不等式的性质是解决本题的关键.不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.

    3.【答案】C 
    【解析】解:∵D、E分别是AB、AC的中点,
    ∴DE=12BC,
    ∵DE=5,
    ∴BC=10.
    故选C.
    利用三角形的中位线定理求得BC即可.
    此题主要是根据三角形的中位线定理进行分析计算.

    4.【答案】A 
    【解析】解:由题意得,x+2=0,且x≠0,
    即x=−2,
    故选:A.
    根据分式的值为0,令分子为0,分母不为0即可.
    本题考查分式的值为0的条件,掌握“分式的分子为0,分母不为0时,分式的值为0”是正确解答的前提.

    5.【答案】B 
    【解析】解:∵将△ABC绕点A逆时针旋转90°得到△ADE,
    ∴AB=AD,∠BAD=90°,
    ∴∠ABD=∠ADB=45°,
    故选:B.
    根据旋转的性质得出AB=AD,∠BAD=90°,即可求解.
    本题考查了旋转的性质,明确旋转前后对应边,对应角相等是解题的关键.

    6.【答案】B 
    【解析】解:∵四边形ABCD是平行四边形,
    ∴AD//BC,OA=OC,OB=OD,
    ∴OA=13,
    在Rt△ADO中,由勾股定理得,
    DO= AO2−AD2= 132−122=5,
    ∴BD=2OD=10,
    ∴AD与BC间的距离为10,
    故选:B.
    利用平行四边形的性质得OA=OC,OB=OD,再利用勾股定理求出DO,从而得出答案.
    本题主要考查了平行四边形的性质,勾股定理等知识,熟练掌握平行四边形的性质是解题的关键.

    7.【答案】D 
    【解析】解:∵a+b=7,ab=6,
    ∴a2b+ab2
    =ab(a+b)
    =6×7
    =42.
    故选:D.
    直接把a2b+ab2用提公因式法分解因式,再整体代入计算即可计算.
    本题主要考查用提公因式分解因式,熟练掌握提公因式法是解决本题的关键.

    8.【答案】C 
    【解析】解:∵AB=AC,∠BAC=112°,
    ∴∠B=(180°−112°)÷2=34°,
    ∵EF垂直平分AB,
    ∴BF=AF,
    ∴∠BAF=∠B=34°,
    ∴∠AFC=∠BAF+∠B=68°.
    故选:C.
    先由等腰三角形的性质求出∠B的度数,再由垂直平分线的性质可得出∠BAF=∠B,由三角形内角与外角的关系即可解答.
    本题考查的是线段垂直平分线的性质,即线段的垂直平分线上的点到线段的两个端点的距离相等.

    9.【答案】C 
    【解析】解:①AB//CD,AD=BC,不能判定四边形ABCD为平行四边形;不符合题意;
    ②AB=CD,AD=BC,两组对边分别相等的四边形是平行四边形可判定四边形ABCD为平行四边形;符合题意;
    ③OA=OC,OB=OD,对角线互相平分的四边形是平行四边形可判定四边形ABCD为平行四边形;符合题意;
    ④AB=BC,AD=CD;不能判定四边形ABCD为平行四边形;不符合题意;
    故选:C.
    根据平行四边形的判定定理分别进行分析即可.
    此题主要考查了平行四边形的判定,关键是掌握(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.

    10.【答案】A 
    【解析】解:x+1x−1−4x2−1=1,
    两边同乘(x2−1),去分母得:(x+1)2−4=x2−1,
    整理得:2x=2,
    解得:x=1,
    将x=1代入(x2−1)中可得1−1=0,
    则x=1是原分式方程的增根,
    故选:A.
    解分式方程后按照解分式方程的增根的定义即可求得答案.
    本题考查分式方程的增根的定义及解分式方程,注意解分式方程时必须进行检验.

    11.【答案】50 
    【解析】
    【分析】
    此题考查了平行四边形的性质.
    由在平行四边形ABCD中,∠A=50°,根据平行四边形的对角相等,即可求得答案.
    【解答】
    解:∵四边形ABCD是平行四边形,
    ∴∠C=∠A=50°.
    故答案为:50.  
    12.【答案】900° 
    【解析】解:由n边形内角和度数为(n−2)⋅180°,n=7得:
    七边形内角和的度数是(7−2)×180°=900°,
    故答案为:900°.
    根据n边形内角和公式即可得到答案.
    本题考查多边形内角和,解题的关键是掌握多边形内角和公式:n边形内角和度数为(n−2)⋅180°.

    13.【答案】x>4(答案不唯一) 
    【解析】解:数轴上所表示的不等式的解集为x>4,
    故答案为:x>4(答案不唯一).
    根据在数轴上表示不等式解集的方法进行判断即可.
    本题考查在数轴上表示不等式的解集,掌握在数轴上表示不等式解集的方法是正确解答的前提.

    14.【答案】8 
    【解析】解:由2x−a>0,得x>a2,
    因为关于x的不等式2x−a>0的解集为x>4,
    所以a2=4,
    解得a=8.
    故答案为:8.
    根据解一元一次不等式的方法和题意,可以求得a的值,本题得以解决.
    本题考查解一元一次不等式,解答本题的关键是明确解一元一次不等式的方法.

    15.【答案】等腰三角形 
    【解析】解:已知等式变形得:(a+b)(a−b)+c(a−b)=0,即(a−b)(a+b+c)=0,
    ∵a+b+c≠0,
    ∴a−b=0,即a=b,
    则△ABC为等腰三角形.
    故答案为:等腰三角形.
    已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b,即可确定出三角形形状.
    此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.

    16.【答案】解:−2x<6①2x+43<3−x②,
    解不等式①得:x>−3,
    解不等式②得:x<1,
    ∴原不等式组的解集为:−3 【解析】按照解一元一次不等式组的步骤,进行计算即可解答.
    本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的步骤是解题的关键.

    17.【答案】解:∵A(1,1)平移到点A1(5,2),
    ∴平移规律为先向右平移4个单位,再向上平移1个单位,
    ∴点B(2,4)平移后得点B1的坐标为(2+4,4+1),即(6,5),
    ∵AB平行且等于A1B1,
    ∴四边形ABB1A1的形状为平行四边形. 
    【解析】根据A(1,1)平移到点A1(5,2),可得平移规律为先向右平移4个单位,再向上平移1个单位,再根据平移的变换规律即可求出点B1的坐标,根据AB平行且等于A1B1,即可判断四边形ABB1A1的形状.
    本题主要考查坐标与图形变化−平移,解题的关键是掌握平移变换的定义和性质,并据此得出变换后的对应点.

    18.【答案】证明:∵四边形ABCD是平行四边形,
    ∴AD=BC,AD//BC,∠BAD=∠BCD.
    ∴∠ADB=∠CBD.
    ∵∠BAD、∠BCD的平分线分别交对角线BD于点E、F,
    ∴∠EAD=12∠BAD,∠FCB=12∠BCD,
    ∴∠EAD=∠FCB.
    在△AED和△CFB中,
    ∠ADE=∠CBFAD=CB∠EAD=∠FCB,
    ∴△AED≌△CFB(ASA),
    ∴AE=CF. 
    【解析】由在▱ABCD中,可得AD=BC,AD//BC,∠BAD=∠BCD,又由∠BAD和∠BCD的平分线AE、CF分别与对角线BD相交于点E,F,可证得∠EAD=∠FCB,继而可证得△AED≌△FCB(ASA),由全等三角形的性质即可得到AE=CF.
    此题考查了平行四边形的性质以及全等三角形的判定与性质.注意证得△AED≌△FCB是证题的关键.

    19.【答案】解:a2+aa2+2a+1−a−1a2−1
    =a(a+1)(a+1)2−a−1(a−1)(a+1)
    =aa+1−1a+1
    =a−1a+1,
    ∵a2−1≠0,a+1≠0,
    ∴a≠±1,
    ∵a是在−2 ∴当a=0时,
    原式=0−10+1
    =−1. 
    【解析】利用分式的相应的法则对式子进行化简,再结合分式有意义的条件选取合适的数代入运算即可.
    本题主要考查分式的化简求值,解答的关键是对相应的运算法则的掌握.

    20.【答案】解:设购买1个乙商品需x元,则购买1个甲商品需(x+15)元,
    根据题意得:400x+15=100x,
    解得:x=5,
    经检验,x=5是所列方程的解,且符合题意,
    ∴x+15=5+15=20.
    答:购买1个甲商品需20元,购买1个乙商品需5元. 
    【解析】设购买1个乙商品需x元,则购买1个甲商品需(x+15)元,利用数量=总价÷单价,结合花费400元购买甲商品和花费100元购买乙商品的数量相等,可列出关于x的分式方程,解之经检验后,可得出购买1个乙商品所需费用,再将其代入(x+15)中,即可求出购买1个甲商品所需费用.
    本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.

    21.【答案】(1)证明:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,
    ∴DE=DF,∠BED=∠DFC=90°,
    在Rt△BDE和Rt△CDF中,
    DE=DFBD=CD,
    ∴Rt△BDE≌Rt△CDF(HL),
    ∴∠B=∠C,
    ∴AB=AC,
    ∴△ABC是等腰三角形;
    (2)解:∵AB=AC,BD=CD,
    ∴AD⊥BC,
    ∵AB=4,∠B=60°,
    ∴BD=12AB=2,
    ∴BE=12BD=1,
    ∴DE= 3BE= 3,
    ∵DE⊥AB,
    ∴点D到AB的距离为 3. 
    【解析】(1)根据角平分线的性质得DE=DF,再通过HL证明Rt△BDE≌Rt△CDF即可解决问题;
    (2)根据等腰三角形的性质可得AD⊥BC,然后利用含30度角的直角三角形的性质即可解决问题.
    本题主要考查了角平分线的性质,全等三角形的判定与性质,等腰三角形的判定与性质,含30度角的直角三角形等知识,证明Rt△BDE≌Rt△CDF是解题的关键.

    22.【答案】解:如果①AD是角平分线:②DE⊥AB;
    那么③CD=BE.
    证明:在△ABC中,AC=BC,∠C=90°,
    ∴∠CAB=∠B=45°,
    ∵AD是角平分线,DE⊥AB,∠C=90°,
    ∴CD=DE,
    ∵DE⊥AB,∠B=45°,
    ∴DE=BE,
    ∴CD=BE. 
    【解析】根据题意写出真命题,利用等腰直角三角形的性质得到∠CAB=∠B=45°,根据角平分线的性质得到CD=DE,等量代换证明结论.
    本题考查的是角平分线的性质、等腰直角三角形的性质,掌握角平分线的性质定理是解题的关键.

    23.【答案】x<3 
    【解析】解:(1)由图象可得,当y1>0时,x的取值范围是x<3,
    故答案为:x<3;
    (2)∵y1=−x+b的图象经过点(3,0).
    ∴y1=−x+3,
    把x=2代入y1=−x+3得y1=1;
    ∵当x>2时,对于x的每一个值,都有y1 ∴x=2时,y2≥1,即2m−1≥1,
    ∴m≥1;
    (3)m=1时,3x+1(3−x)(x−1)=A−x+3+Bx−1,
    ∴3x+1(3−x)(x−1)=(A−B)x−A+3B(3−x)(x−1),
    ∴A−B=3−A+3B=1,
    解得A=5B=2,
    ∴A的值为5,B的值为2.
    (1)由图象直接可得答案;
    (2)根据当x>2时,对于x的每一个值,都有y1 (3)m=1时,3x+1(3−x)(x−1)=A−x+3+Bx−1,可得A−B=3−A+3B=1,故A的值为5,B的值为2.
    本题考查一次函数图象与系数的关系,解题的关键是列出相应的不等式或方程组解决问题.

    24.【答案】(1)解:过E作ED⊥AF,在直线ED上取ED=AC即可,如图:

    点D即为所求的点;
    (2)①证明:连接BF,如图:

    ∵线段AF绕点A顺时针方向旋转60°得到AE,
    ∴AF=AE,∠FAE=60°,
    ∴△AEF是等边三角形,
    ∴∠AFE=60°,EF=AF=AE,
    ∵△ABC是等边三角形,
    ∴AB=AC,
    ∵DE=AC,
    ∴AB=DE,
    ∵AF平分∠BAC,
    ∴∠FAB=30°,
    ∵DE⊥AF,
    ∴∠DEF=12∠AEF=30°=∠FAB,
    ∴△ABF≌△EDF(SAS),
    ∴BF=DF,∠AFB=∠EFD,
    ∴∠BFE=∠DFA,
    ∵△ABC是等边三角形,AF平分∠BAC,
    ∴直线AF是△ABC的对称轴,
    ∴BF=CF,∠BFK=∠CFK,
    ∴DF=CF,
    ∵∠AFE=60°,
    ∴∠BFE+∠BFK=120°=∠DFA+∠CFK,
    ∴∠DFC=60°,
    ∴△CDF是等边三角形,
    ∴CD=DF,
    ∵EF+DF>DE,
    ∴AE+CD>AC;
    ②证明:由①可知,△CDF是等边三角形;
    ③解:当DF=EF时,如图:

    ∵∠EMF=90°,∠MFE=60°,
    ∴∠MEF=30°,
    ∵DE=AC=AB= 3,
    ∴EM=12DE= 32,
    ∴MF=EM 3=12,
    ∴AF=EF=2MF=1;
    当DE=DF时,如图:

    ∵∠EKF=90°,∠EFK=60°,
    ∴∠KEF=30°,
    ∴∠DFE=30°,
    ∴∠DFK=30°,
    ∵DF=DE=AC=AB= 3,
    ∴DK=12DF= 32,
    ∴KF= 3DK=32,
    ∴AF=2KF=3;
    当DE=EF时,如图:

    ∵AF=EF,
    ∴AF=DE=AC=AB= 3;
    综上所述,AF的长度为1或3或 3. 
    【解析】(1)过E作ED⊥AF,在直线ED上取ED=AC即可;
    (2)①连接BF,可得△AEF是等边三角形,从而证明△ABF≌△EDF(SAS),有BF=DF,∠AFB=∠EFD,而直线AF是△ABC的对称轴,知BF=CF,∠BFK=∠CFK,故DF=CF,可得∠DFC=60°,△CDF是等边三角形,CD=DF,即可得AE+CD>AC;
    ②同①可证△CDF是等边三角形;
    ③分三种情况:当DF=EF时,可得AF=EF=2MF=1;当DE=DF时,AF=2KF=3;当DE=EF时,AF=DE=AC=AB= 3.
    本题考查几何变换综合应用,涉及等边三角形判定与性质,等腰三角形性质及应用,全等三角形判定与性质等知识,解题的关键是分类讨论思想的应用.

    相关试卷

    2022-2023学年广东省佛山市顺德区七年级(下)期末数学试卷(含解析): 这是一份2022-2023学年广东省佛山市顺德区七年级(下)期末数学试卷(含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年广东省佛山市顺德区七年级(下)期末数学试卷(含解析): 这是一份2022-2023学年广东省佛山市顺德区七年级(下)期末数学试卷(含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年广东省佛山市顺德区华附北滘学校八年级(下)期中数学试卷(含解析): 这是一份2022-2023学年广东省佛山市顺德区华附北滘学校八年级(下)期中数学试卷(含解析),共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map