终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    备战2024高考一轮复习数学(理) 第二章 函数的概念及基本初等函数(Ⅰ) 第六节 对数与对数函数课件PPT

    立即下载
    加入资料篮
    备战2024高考一轮复习数学(理) 第二章 函数的概念及基本初等函数(Ⅰ) 第六节 对数与对数函数课件PPT第1页
    备战2024高考一轮复习数学(理) 第二章 函数的概念及基本初等函数(Ⅰ) 第六节 对数与对数函数课件PPT第2页
    备战2024高考一轮复习数学(理) 第二章 函数的概念及基本初等函数(Ⅰ) 第六节 对数与对数函数课件PPT第3页
    备战2024高考一轮复习数学(理) 第二章 函数的概念及基本初等函数(Ⅰ) 第六节 对数与对数函数课件PPT第4页
    备战2024高考一轮复习数学(理) 第二章 函数的概念及基本初等函数(Ⅰ) 第六节 对数与对数函数课件PPT第5页
    备战2024高考一轮复习数学(理) 第二章 函数的概念及基本初等函数(Ⅰ) 第六节 对数与对数函数课件PPT第6页
    备战2024高考一轮复习数学(理) 第二章 函数的概念及基本初等函数(Ⅰ) 第六节 对数与对数函数课件PPT第7页
    备战2024高考一轮复习数学(理) 第二章 函数的概念及基本初等函数(Ⅰ) 第六节 对数与对数函数课件PPT第8页
    还剩32页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    备战2024高考一轮复习数学(理) 第二章 函数的概念及基本初等函数(Ⅰ) 第六节 对数与对数函数课件PPT

    展开

    这是一份备战2024高考一轮复习数学(理) 第二章 函数的概念及基本初等函数(Ⅰ) 第六节 对数与对数函数课件PPT,共40页。PPT课件主要包含了y=x等内容,欢迎下载使用。
    2.对数函数的图象与性质
    3.反函数指数函数y=ax(a>0,且a≠1)与对数函数y=lgax(a>0,且a≠1)互为反函数,它们的定义域与值域正好互换,图象关于直线 对称.
    1.lg29×lg34+2lg510+lg50.25=(  )A.0 B.2 C.4 D.6解析:原式=2lg23×2lg32+lg5(102×0.25)=4+lg525=4+2=6.答案:D 
    [一“点”就过]对数运算的一般思路
    基础点(二) 对数函数图象的识辨 [题点全训]1.若函数y=a|x|(a>0且a≠1)的值域为{y|y≥1},则函数y=lga|x|的图象大致为(  )解析:由于y=a|x|的值域为{y|y≥1},所以a>1,则y=lga|x|在(0,+∞)上是增函数,又函数y=lga|x|的图象关于y轴对称.因此y=lga|x|的图象大致为选项B.答案:B 
    2.若函数f(x)=ax-a-x(a>0且a≠1)在R上为减函数,则函数y=lga(|x|-1)的图象可以是(  )
    [一“点”就过]研究对数型函数图象的思路(1)对有关对数型函数图象的识别问题,主要依据底数确定图象的变化趋势、图象的位置、图象所过的定点及图象与坐标轴的交点等,通过排除法求解.(2)对有关对数型函数的作图问题,一般是从基本初等函数的图象入手,通过平移、伸缩、对称变换得到所要求的函数图象.特别地,当底数与1的大小关系不确定时应注意分类讨论.
    对于较复杂的指数或对数不等式有解或恒成立问题,可借助函数图象解决,具体步骤如下:(1)对不等式变形,使不等号两边对应两函数f(x),g(x);(2)在同一平面直角坐标系内作出函数y=f(x)及函数y=g(x)的图象;(3)观察当x在某一范围内取值时图象的位置关系及交点的个数,由此确定参数的取值或不等式的解的情况.  
    2.设方程10x=|lg(-x)|的两个根分别为x1,x2,则(  )A.x1x2<0 B.x1x2=0C.x1x2>1 D.0<x1x2<1解析:作出y=10x与y=|lg(-x)|的大致图象,如图.显然x1<0,x2<0.不妨令x1<x2,则x1<-1<x2<0,所以10x1=lg(-x1),10x2=-lg(-x2),此时10x1<10x2,即lg(-x1)<-lg(-x2),由此得lg(x1x2)<0,所以0<x1x2<1,故选D.答案:D 
    重难点(二) 对数函数的性质及其应用 考法1 比较大小[例1] 已知a=lg62,b=lg124,c=lg186,则(  )A.c>b>a B.a>b>cC.c>a>b D.a>c>b
    [方法技巧] 比较对数函数值大小的方法
    考法2 解对数不等式[例2] 已知不等式lgx(2x2+1)1与0lgbg(x)的不等式,基本方法是将不等式两边化为同底的两个对数式,利用对数函数的单调性“脱去”对数符号,同时应保证真数大于零.  
    考法3 对数函数的性质的综合应用[例3] 已知函数f(x)=lga(3-ax).(1)当x∈[0,2]时,函数f(x)恒有意义,求实数a的取值范围;(2)是否存在这样的实数a,使得函数f(x)在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a的值;如果不存在,请说明理由.
    [方法技巧]解决对数函数性质的综合问题的注意点(1)要分清函数的底数是a∈(0,1),还是a∈(1,+∞).(2)确定函数的定义域,无论研究函数的什么性质或利用函数的某个性质,都要在其定义域上进行.(3)转化时一定要注意对数问题转化的等价性.  
    2.已知函数f(x)=lga(8-ax)(a>0,且a≠1),若f(x)>1在区间[1,2]上恒成立,则实数a的取值范围是________.
    3.(忽略对数函数的定义域)若函数y=lga(2-ax)在[0,1]上单调递减,则a的取值范围是(  )A.(0,1) B.(1,2) C.(0,2) D.(1,+∞)解析:令u=2-ax,因为a>0,所以u=2-ax在定义域上是减函数,要使函数y=lga(2-ax)在[0,1]上单调递减,则函数y=lgau在其定义域上必为增函数,故a>1.当x∈[0,1]时,umin=2-a×1=2-a.因为2-ax>0在x∈[0,1]时恒成立,所以umin>0,即2-a>0,a

    相关课件

    备战2024高考一轮复习数学(理) 第二章 函数的概念及基本初等函数(Ⅰ) 习题课——函数性质的综合应用课件PPT:

    这是一份备战2024高考一轮复习数学(理) 第二章 函数的概念及基本初等函数(Ⅰ) 习题课——函数性质的综合应用课件PPT,共18页。

    备战2024高考一轮复习数学(理) 第二章 函数的概念及基本初等函数(Ⅰ) 第一节 函数及其表示课件PPT:

    这是一份备战2024高考一轮复习数学(理) 第二章 函数的概念及基本初等函数(Ⅰ) 第一节 函数及其表示课件PPT,共36页。PPT课件主要包含了非空的实数集,y=fxx∈A,自变量,定义域,对应关系,分段函数等内容,欢迎下载使用。

    备战2024高考一轮复习数学(理) 第二章 函数的概念及基本初等函数(Ⅰ) 第五节 指数与指数函数课件PPT:

    这是一份备战2024高考一轮复习数学(理) 第二章 函数的概念及基本初等函数(Ⅰ) 第五节 指数与指数函数课件PPT,共38页。PPT课件主要包含了有理数指数幂,ar+s,ars,arbr,答案D,化简下列各式等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map