所属成套资源:2023年初中数学中考复习
初中数学中考复习:32特殊三角形(含答案)
展开
这是一份初中数学中考复习:32特殊三角形(含答案),共9页。
中考总复习:全等三角形—巩固练习(提高)【巩固练习】一、选择题1. 已知等边△ABC的边长为a,则它的面积是( )
A.a2 B.a2 C.a2 D.a22.在四边形ABCD中,对角线AC与BD相交于点E,若AC平分∠DAB,AB=AE,AC=AD.那么在下列四个结论中:(1)AC⊥BD;(2)BC=DE;(3)∠DBC=∠DAB;(4)△ABE是正三角形,其中正确的是( )A.(1)和(2) B.(2)和(3) C.(3)和(4) D.(1)和(4) 3.如图,等腰三角形ABC中,∠BAC=90°,在底边BC上截取BD=AB,过D作DE⊥BC交AC于E,连接AD,则图中等腰三角形的个数是( ) A.1 B.2 C.3 D.44.如图,三角形纸片ABC中,∠B=2∠C,把三角形纸片沿直线AD折叠,点B落在AC边上的E处,那么下列等式成立的是( )A.AC=AD+BD B.AC=AB+BD C.AC=AD+CD D.AC=AB+ CD 5.(2012•镇江)边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为( )A. B. C. D. 6. 用含30°角的两块同样大小的直角三角板拼图形,下列四种图形:①平行四边形,②菱形,③矩形,④直角梯形,其中可以被拼成的图形是( )A.①② B.①③ C.③④ D.①②③;二、填空题7.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:
① AD=BE;② PQ∥AE;③ AP=BQ;④ DE=DP; ⑤ ∠AOB=60°.
恒成立的有______________(把你认为正确的序号都填上).8.如图,小量角器的零度线在大量角器的零度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点在小量角器上对应的度数为,那么在大量角器上对应的度数为_____(只需写出~的角度). 9. 若直角三角形两直角边的和为3,斜边上的高为,则斜边的长为 .10.如图,已知正方形ABCD的边长为2,△BPC是等边三角形,则△CDP的面积是_________;△BPD的面积是_________.
11.如图,P是正三角形 ABC 内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P′AB ,则点P与点P′ 之间的距离为_________,∠APB=_________.
12..以等腰三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,……,如此作下去,若OA=OB=1,则第n个等腰直角三角形的面积Sn=________.三、解答题13. 已知:在△ABC中,∠ABC=90°,点E在直线AB上,ED与直线AC垂直,垂足为D,且点M为EC中点,连接BM,DM.
(1)如图1,若点E在线段AB上,探究线段BM与DM及∠BMD与∠BCD所满足的数量关系,并直接写出你得到的结论;
(2)如图2,若点E在BA延长线上,你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明;
(3)若点E在AB延长线上,请你根据条件画出相应的图形,并直接写出线段BM与DM及∠BMD与∠BCD所满足的数量关系. 14. (1) 如图1,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,∠AOF=90°.
求证:BE=CF.
图1
(2) 如图2,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°, EF=4.求GH的长.
图2
(3) 已知点E,H,F,G分别在矩形ABCD的边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=4. 直接写出下列两题的答案:
①如图3,矩形ABCD由2个全等的正方形组成,求GH的长;
②如图4,矩形ABCD由n个全等的正方形组成,求GH的长(用n的代数式表示).
图3 图4
15.①如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连ME.正方形ABCD中,∠B=∠BCD=90°,
AB=BC.∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=∠MAB=∠MAE.
(下面请你完成余下的证明过程)
②若将①中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.
③若将①中的“正方形ABCD”改为“正边形ABCD…X”,请你做出猜想:
当∠AMN=_____________°时,结论AM=MN仍然成立.(直接写出答案,不需要证明)
16.如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.
⑴ 求证:△AMB≌△ENB;
⑵ ①当M点在何处时,AM+CM的值最小;
②当M点在何处时,AM+BM+CM的值最小,并说明理由;
⑶ 当AM+BM+CM的最小值为时,求正方形的边长.
【答案与解析】一、选择题1.【答案】D.2.【答案】B.【解析】此题采取排除法做.(1)AB=AE,所以△ABE是等腰的,等腰三角形底角∠AEB不可能90°,所以AC⊥BD不成立.排除A,D;(2)∵AC平分∠DAB,AB=AE,AC=AD.∴△DAE≌△CAB,∴BC=DE成立,排除C. 3.【答案】D.【解析】三角形ABC是等腰三角形,且∠BAC=90°,所以∠B=∠C=45°,又DE⊥BC,所以∠DEC=∠C=45°,所以△EDC是等腰三角形,BD=AB,所以△ABD是等腰三角形,∠BAD=∠BDA,而∠EAD=90°-∠BAD,∠EDA=90°-∠BDA,所以∠EAD=∠EDA,所以△EAD是等腰三角形,因此图中等腰三角形共4个.4.【答案】B.【解析】根据题意证得AB=AE,BD=DE,DE=EC.据此可以对以下选项进行一一判定.选B.5.【答案】A.6.【答案】B.【解析】 当把完全重合的含有30°角的两块三角板拼成的图形有三种情况:
(1)当把60度角对的边重合,且两个直角的顶角也重合时,所成的图形是等边三角形;
(2)当把30度角对的边重合,且两个直角的顶角也重合时,所成的图形是等腰三角形;
(3)当斜边重合,且一个三角形的30度角的顶点与另一个三角形60度角的顶点重合时,所成的图形是矩形,矩形也是平行四边形.选B二、填空题7.【答案】①②③⑤.【解析】提示:证△ACD≌△BCE, △ACP≌△BCQ.8.【答案】50°.9.【答案】.【解析】设直角边为a,b,斜边为c,则+=3,,,代入即可.10.【答案】1, .【解析】∵△BPC是等边三角形,∴∠PCD=30°做PE⊥CD,得PE=1,即△CDP的面积是=×2×1=1;根据即可推得.11.【答案】6 ,150°.12.【答案】.三、解答题13.【答案与解析】(1)结论:BM=DM,∠BMD=2∠BCD.
理由:∵BM、DM分别是Rt△DEC、Rt△EBC的斜边上的中线,
∴BM=DM=CE;
又∵BM=MC,∴∠MCB=∠MBC,即∠BME=2∠BCM;
同理可得∠DME=2∠DCM;
∴∠BME+∠DME=2(∠BCM+∠DCM),即∠BMD=2∠BCD.
(2)在(1)中得到的结论仍然成立.即BM=DM,∠BMD=2∠BCD
证法一:∵点M是Rt△BEC的斜边EC的中点,
∴BM=EC=MC,又点M是Rt△BEC的斜边EC的中点,
∴DM=EC=MC,
∴BM=DM;
∵BM=MC,DM=MC,
∴∠CBM=∠BCM,∠DCM=∠CDM,
∴∠BMD=∠EMB+∠EMD=2∠BCM+2∠DCM=2(∠BCM+∠DCM)=2∠BCD,
即∠BMD=2∠BCD.
证法二:∵点M是Rt△BEC的斜边EC的中点,
∴BM=EC=ME;
又点M是Rt△DEC的斜边EC的中点,
∴DM=EC=MC,
∴BM=DM;
∵BM=ME,DM=MC,
∴∠BEC=∠EBM,∠MCD=∠MDC,
∴∠BEM+∠MCD=∠BAC=90°-∠BCD,
∴∠BMD=180°-(∠BMC+∠DME),=180°-2(∠BEM+∠MCD)=180°-2(90°-∠BCD)=2∠BCD,
即∠BMD=2∠BCD.
(3)所画图形如图所示:
图1中有BM=DM,∠BMD=2∠BCD;
图2中∠BCD不存在,有BM=DM;
图3中有BM=DM,∠BMD=360°-2∠BCD.
解法同(2).14.【答案与解析】(1) 证明:如图1,∵ 四边形ABCD为正方形,
∴ AB=BC,∠ABC=∠BCD=90°,
∴ ∠EAB+∠AEB=90°.
∵ ∠EOB=∠AOF=90°,
∴ ∠FBC+∠AEB=90°,∴ ∠EAB=∠FBC,
∴ △ABE≌△BCF , ∴ BE=CF.
(2) 解:如图2,过点A作AM//GH交BC于M,
过点B作BN//EF交CD于N,AM与BN交于点O/,
则四边形AMHG和四边形BNFE均为平行四边形,
∴ EF=BN,GH=AM,
∵ ∠FOH=90°, AM//GH,EF//BN, ∴ ∠NO/A=90°,
故由(1)得, △ABM≌△BCN, ∴ AM=BN,
∴ GH=EF=4.
(3) ① 8.② 4n. 15.【答案与解析】(1)∵AE=MC,∴BE=BM, ∴∠BEM=∠EMB=45°, ∴∠AEM=1355°,
∵CN平分∠DCP,∴∠PCN=45°,∴∠AEM=∠MCN=135°
在△AEM和△MCN中:∵∴△AEM≌△MCN,∴AM=MN
(2)仍然成立.
在边AB上截取AE=MC,连接ME
∵△ABC是等边三角形,
∴AB=BC,∠B=∠ACB=60°,
∴∠ACP=120°.
∵AE=MC,∴BE=BM
∴∠BEM=∠EMB=60°
∴∠AEM=120°.
∵CN平分∠ACP,∴∠PCN=60°,
∴∠AEM=∠MCN=120°
∵∠CMN=180°—∠AMN—∠AMB=180°—∠B—∠AMB=∠BAM
∴△AEM≌△MCN,∴AM=MN
(3)16.【答案与解析】⑴ ∵△ABE是等边三角形,
∴BA=BE,∠ABE=60°.
∵∠MBN=60°,
∴∠MBN-∠ABN=∠ABE-∠ABN.
即∠BMA=∠NBE.
又∵MB=NB,
∴△AMB≌△ENB(SAS).
⑵ ①当M点落在BD的中点时,AM+CM的值最小.
②如图,连接CE,当M点位于BD与CE的交点处时,
AM+BM+CM的值最小. 理由如下:连接MN.由⑴知,△AMB≌△ENB,
∴AM=EN.
∵∠MBN=60°,MB=NB,
∴△BMN是等边三角形.
∴BM=MN.
∴AM+BM+CM=EN+MN+CM.
根据“两点之间线段最短”,得EN+MN+CM=EC最短
∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长.
⑶ 过E点作EF⊥BC交CB的延长线于F,
∴∠EBF=90°-60°=30°.
设正方形的边长为x,则BF=x,EF=.
在Rt△EFC中,∵EF2+FC2=EC2,
∴()2+(x+x)2=.
解得,x=(舍去负值).
∴正方形的边长为.
相关试卷
这是一份初中数学中考复习:31特殊三角形(含答案),共6页。
这是一份初中数学中考复习 专题32 中考几何平移类问题(原卷版),共11页。试卷主要包含了平移的定义,平移的特点,理解并掌握平移的三个特征,图形平移的画法等内容,欢迎下载使用。
这是一份初中数学中考复习 专题27 特殊三角形【考点精讲】(解析版),共23页。试卷主要包含了定义,性质,判定等内容,欢迎下载使用。