所属成套资源:2023年初中数学中考复习
初中数学中考复习:35特殊的四边形(含答案)
展开
这是一份初中数学中考复习:35特殊的四边形(含答案),共7页。
中考总复习:特殊的四边形--巩固练习(基础)【巩固练习】一、选择题1.用两个完全相同的直角三角板,不能拼成的图形是( ).
A.平行四边形 B.矩形 C.等腰三角形 D.梯形2.如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F,则△CEF面积为( ).
A.4 B.6 C.8 D.103.如图所示,在矩形ABCD中,AB=3,AD=4,P是AD上的一点,PE⊥AC,垂足为E,PF⊥BD,垂足为F,则PE+PF的值为( ).A. B. C.2 D. 第3题 第4题 4.如图,E、F、G、H分别是四边形ABCD四条边的中点,要使EFGH为矩形,四边形应该具备的条件是( ).
A.一组对边平行而另一组对边不平行 B.对角线相等
C.对角线相互垂直 D.对角线互相平分5.如图,正方形ABCD中,O是对角线AC、BD的交点,过O点作OE⊥OF分别交AB、BC于E、F,若AE=4,CF=3,则EF等于( ). A.7 B.5 C.4 D.3
第5题 第6题6.如图,在矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为( ).
A.15° B.18° C.36° D.54°;二、填空题7. 如图,梯形ABCD中,AD∥BC,∠B与∠C互余,AD=5,BC=13,M、N分别为AD、BC的中点,则MN的长为__________.
第7题 第8题8. 如图,菱形ABCD中,于E,于F,,则等于___________.9. 正方形ABCD中,E为BC上一点,BE=,CE=,P在BD上,则PE+PC的最小值可能为__________.10.如图,M为正方形ABCD中BC边的中点,将正方形折起,使点A与M重合,设折痕为EF,若正方形的面积为64,则△AEM的面积为____________.
11.如图,△ABC是以AB为斜边的直角三角形,AC=4,BC=3,P为AB上一动点,且PE⊥AC于E,PF⊥BC于F,则线段EF长度的最小值是_______________. 第10题 第11题 第12题12.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,∠C=60°,BC=2AD=2,点E是BC边的中点,△DEF是等边三角形,DF交AB于点G,则△BFG的周长为________. 三、解答题13.如图1,图2,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F.
(1)如图1,当点E在AB边的中点位置时:
①猜想DE与EF满足的数量关系是__________;
②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是__________;
③请证明你的上述两个猜想.
(2)如图2,当点E在AB边上的任意位置时,请你在AD边上找到一点N,使得NE=BF,进而猜想此 时 DE 与EF有怎样的数量关系.
14. 如图,在梯形ABCD中,AD//BC,AB=CD=3cm,∠A=120°,BD⊥CD,
(1)求BC、AD的长度;
(2)若点P从点B开始沿BC边向点C以2cm/秒的速度运动,点Q从点C开始沿CD边向点D以1cm/秒的速度运动,当P、Q分别从B、C同时出发时,写出五边形ABPQD的面积S与运动时间t之间的关系式,并写出t的取值范围(不包含点P在B、C两点的情况);
(3)在(2)的前提下,是否存在某一时刻t,使线段PQ把梯形ABCD分成两部分的面积比为1:5?若存在,求出t的值;若不存在,请说明理由.
15.将矩形ABCD的四个角向内折起, 恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3, EF=4,那么线段AD:AB的值为多少?
16.如图,十三个边长为正整数的正方形纸片恰好拼成一个大矩形(其中有三个小正方形的边长已标出字母x,y,z).试求满足上述条件的矩形的面积最小值. 【答案与解析】一.选择题1.【答案】D.2.【答案】C.3.【答案】A.4.【答案】C.5.【答案】B.【解析】可证△OEB≌△OFC,则EB=FC=3,AE=BF=4,EF==5.6.【答案】B.【解析】由题意∠ADE=54°,∠CDE=36°,∠DCE=54°,∠BDE=54°-36°=18°.二.填空题7.【答案】15.8.【答案】60°.9.【答案】.10.【答案】10.【解析】提示:设AE=x=EM ,BE=8-x,MB=4,在Rt△BEM中由勾股定理解得x=5,从而算出面积.11.【答案】.【解析】连接PC.
∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°;
又∵∠ACB=90°,∴四边形ECFP是矩形,
∴EF=PC,∴当PC最小时,EF也最小,
即当CP⊥AB时,PC最小,
∵AC=4,BC=3,∴AB=5,
∴AC•BC=AB•PC,∴PC=.
∴线段EF长的最小值为;故答案是:.12.【答案】3+.【解析】首先由已知AD∥BC,∠ABC=90°点E是BC边的中点,推出四边形ABED是矩形,所以得到直角三角形CED,所以能求出CD和DE,又由△DEF是等边三角形,得出DF,由直角三角形AGD可求出AG、DG,进而求得FG,再证△AGD≌△BGF,得到BF=AD,从而求出△BFG的周长.三.综合题13.【解析】(1)①DE=EF;
②NE=BF;
③∵四边形ABCD为正方形,
∴AD=AB,∠DAB=∠ABC=90°,
∵N,E分别为AD,AB中点,
∴AN=DN=AD,AE=EB=AB,
∴DN=BE,AN=AE,
∵∠DEF=90°,
∴∠AED+∠FEB=90°,
又∵∠ADE+∠AED=90°,
∴∠FEB=∠ADE,
又∵AN=AE,
∴∠ANE=∠AEN,
又∵∠A=90°,
∴∠ANE=45°,
∴∠DNE=180°-∠ANE=135°,
又∵∠CBM=90°,BF平分∠CBM,
∴∠CBF=45°,∠EBF=135°,
∴△DNE≌△EBF(ASA),
∴DE=EF,NE=BF.
(2)在DA上截取DN=EB(或截取AN=AE),
连接NE,则点N可使得NE=BF.
此时DE=EF.
证明方法同(1),证△DNE≌△EBF.14.【解析】(1)在Rt△BCD中,CD=3cm,∠C=60°,
∴∠DBC=30°,
∴BC=2CD=6cm.
由已知得:梯形ABCD是等腰梯形,
∴∠ABC=∠C=60°,
∴∠ABD=∠ABC-∠DBC=30°.
∵AD∥BC,
∴∠ADB=∠DBC=30°,
∴∠ABD=∠ADB,
∴AD=AB=3cm.
(2)当P、Q分别从B、C同时出发运动t秒时,BP=2t,CQ=t,
∴PC=6-2t,
过Q作QE⊥BC于E,则QE=CQsin60°=t,
∴S梯形ABCD-S△PCQ=-(6-2t)t=(2t2-6t+27)(0<t<3).
(3)存在时刻t,使线段PQ把梯形ABCD分成两部分的面积比为1:5.
∵S梯形ABCD=,S△ABD=×3××3,
∴S△ABD=×S梯形ABCD,
∴五边形ABPQD的面积不可能是梯形ABCD面积的.
∴S△PCQ:S五边形ABPQD=1:5,
即S五边形ABPQD=S梯形ABCD
∴(2t2-6t+27)=×,
整理得:4t2-12t+9=0,
∴t=,即当t=秒时,PQ把梯形ABCD分成两部分的面积比为1:5.15.【解析】∵矩形ABCD 恰好拼成一个既无缝隙又无重叠的四边形EFGH,
∴AE=EM=EB=x,∠AEH=∠HEM,∠MEF=∠BEF,
∴∠HEF=90°,
Rt△HEF中,EM==,
Rt△AEH中,AH=,
Rt△BEF中,BF=,
∴AD:AB==.16.【解析】已有三个小正方形的边长为x,y,z,我们通过x,y,z表示其余正方形的边长依次填在每个正方形中,
它们是x+y,x+2y,x+3y,4y,x+7y,2x+y,2x+y+z,4x+4y-z,4x+4y-2x及5x-2y+z.
因矩形对边相等,
所以得11x+3y=7x+16y-z及8x+8y-3z=6x+5y+z.
化简上述的两个方程得到z=13y-4x,4z=2x+3y,
消去z得18x=49y.
因为18与49互质,
所以x、y的最小自然数解是x=49,y=18,
此时z=38.
以x=49,y=18,z=38代入矩形长、宽的表达式11x+3y及8x+8y-3z,
得长、宽分别为593和422.
此时得最小面积值是593×422=250246.
相关试卷
这是一份初中数学中考复习:36特殊的四边形(含答案),共9页。
这是一份初中数学中考复习:34四边形综合复习(含答案),共11页。
这是一份初中数学中考复习:33四边形综合复习(含答案),共9页。