数学八年级下册第十八章 平行四边形18.2 特殊的平行四边形18.2.2 菱形一课一练
展开这是一份数学八年级下册第十八章 平行四边形18.2 特殊的平行四边形18.2.2 菱形一课一练,共8页。试卷主要包含了在中,点D是边上的点等内容,欢迎下载使用。
18.2.2 菱形 同步练习
班级:_________ 姓名:_________ 学号:__________
一. 选择题(本大题共10小题,在每小题列出的选项中,选出符合题目的一项)
1.若顺次连接四边形ABCD各边中点所得的四边形是菱形,则下列结论中正确的是( )
A.AB∥CD B.AB⊥BC C.AC⊥BD D.AC=BD
2.已知菱形ABCD,对角线AC=6,BD=8,则菱形ABCD的面积为( )
A.48 B.36 C.25 D.24
3.如图,菱形中,对角线相交于点O,E为边中点,菱形的周长为28,则的长等于( )
A.3.5 B.4 C.7 D.14
4.如图,在菱形中,,点为对角线上一点,为边上一点,连接、、,若,,则的度数为( )
A. B. C. D.
5.如图,四边形是菱形,点E,F分别在边上,添加以下条件不能判定的是( )
A. B. C. D.
6.如图,菱形中,E,F分别是,的中点,若,则菱形的周长为( )
A.20 B.30 C.40 D.50
7.如图,在平面直角坐标系中,四边形为菱形,,,,则对角线交点的坐标为( )
A. B. C. D.
8.在中,点D是边上的点(与B,C两点不重合),过点D作,分别交,于E,F两点,下列说法正确的是( )
A.若,则四边形是矩形
B.若垂直平分,则四边形是矩形
C.若,则四边形是菱形
D.若平分,则四边形是菱形
9.如图,菱形ABCD的两条对角线长分别为AC=6,BD=8,点P是BC边上的一动点,则AP的最小值为( )
A.4 B.4.8 C.5 D.5.5
10.如图,四边形ABCD是平行四边形,过点A作AM⊥BC于点M,交BD于点E,过点C作CN⊥AD于点N,交BD于点F,连接CE,当EA=EC,且点M为BC的中点时,AB:AE的值为( )
A.2 B. C. D.
二、填空题(本大题共6小题,在横线上填上合理的答案)
11.如图,O点是矩形ABCD的对角线的中点,菱形ABEO的边长为2,则BC= ______.
12.如图,平面直角坐标系中,O为坐标原点,菱形的顶点C在x轴正半轴上,,点B的纵坐标为1,则点A的坐标是_______.
13.如图,在菱形中,,点在上,若,则__________.
14.如图,四边形中,E,F,G,H分别是边、、、的中点.若四边形为菱形,则对角线、应满足条件_______.
15.如图,菱形ABCD的周长为40,面积为80,P是对角线BC上一点,分别作P点到直线AB.AD的垂线段PE.PF,则等于______.
16.如图,边长为1的菱形ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连接AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是___.
三、解答题(本大题共5小题,解答应写出文字说明,证明过程或演算步骤)
17.如图,四边形ABCD中,AD∥BC,AB⊥AC,点E是BC的中点,AE与BD交于点F,且F是AE的中点.
(Ⅰ)求证:四边形AECD是菱形;(Ⅱ)若AC=4,AB=5,求四边形ABCD的面积.
18.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,
(1)求证:AF=DC;
(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.
19.如图,在四边形ABCD中,AD=CD,BD⊥AC于点O,点E是DB延长线上一点,OE=OD,BF⊥AE于点F.
(1)求证:四边形AECD是菱形;
(2)若AB平分∠EAC,OB=3,BE=5,求EF和AD的长.
20.如图,在中,对角线AC,BD相交于点O,.
(1)求证:;
(2)若点E,F分别为AD,AO的中点,连接EF,,求BD的长及四边形ABCD的周长.
21.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG∥EF.
(1)求证:四边形OEFG是矩形;
(2)若AD=10,EF=4,求OE和BG的长.
答案:
1.D 2.D 3.A 4.A 5.C 6.C 7.D 8.D 9.B 10.B 11.2
12. 13.115° 14. 15.8 16.
17.证明(Ⅰ)∵AD∥BC
∴∠ADB=∠DBE
∵F是AE中点
∴AF=EF且∠AFD=∠BFE,∠ADB=∠DBE
∴△ADF≌△BEF
∴BE=AD
∵AB⊥AC,E是BC中点
∴AE=BE=EC
∴AD=EC,且AD∥BC
∴四边形ADCE是平行四边形
且AE=EC
∴四边形ADCE是菱形;
(Ⅱ)∵AC=4,AB=5,AB⊥AC
∴S△ABC=10
∵E是BC中点
∴S△AEC=S△ABC=5
∵四边形ADCE是菱形
∴S△AEC=S△ACD=5
∴四边形ABCD的面积=S△ABC+S△ACD=15.
18.解:(1)证明:∵AF∥BC,
∴∠AFE=∠DBE.
∵E是AD的中点,AD是BC边上的中线,
∴AE=DE,BD=CD.
在△AFE和△DBE中,
∵∠AFE=∠DBE,∠FEA=∠BED, AE=DE,
∴△AFE≌△DBE(AAS)
∴AF=BD.
∴AF=DC.
(2)四边形ADCF是菱形,证明如下:
∵AF∥BC,AF=DC,
∴四边形ADCF是平行四边形.
∵AC⊥AB,AD是斜边BC的中线,
∴AD=DC.
∴平行四边形ADCF是菱形.
19.(1)证明:∵,
∴,
在和中,
,
∴(HL),
∴AO=CO,
又∵OE=OD,
∴四边形AECD为菱形.
(2)解:∵AB平分 ,
∴BF=BO=3,
在中,由勾股定理可得,
,
在和中,
,
∴(HL),
∴AO=AF,
设AO=AF=x,AE=4+x,
在中,由勾股定理可得,
,
得,
解得,
∴AE=4+6=10,
即AD=10,
∴EF和AD的长分别为4和10.
20.(1)证明:四边形是平行四边,,
四边形是菱形,
;
(2)解:点E,F分别为AD,AO的中点,
是的中位线,
,
,
,
四边形是菱形,
,
,
在中,,,
,
菱形形的周长为.
21.解:(1)证明:∵四边形ABCD为菱形,
∴点O为BD的中点,
∵点E为AD中点,
∴OE为△ABD的中位线,
∴OE∥FG,
∵OG∥EF,∴四边形OEFG为平行四边形
∵EF⊥AB,∴平行四边形OEFG为矩形.
(2)∵点E为AD的中点,AD=10,
∴AE=
∵∠EFA=90°,EF=4,
∴在Rt△AEF中,.
∵四边形ABCD为菱形,
∴AB=AD=10,
∴OE=AB=5,
∵四边形OEFG为矩形,
∴FG=OE=5,
∴BG=AB-AF-FG=10-3-5=2.
故答案为:OE=5,BG=2.
相关试卷
这是一份初中数学人教版八年级下册18.2.2 菱形课后练习题,共5页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学人教版八年级下册第十八章 平行四边形18.2 特殊的平行四边形18.2.2 菱形达标测试,共9页。试卷主要包含了下列说法错误的是等内容,欢迎下载使用。
这是一份初中人教版18.2.2 菱形综合训练题,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。