所属成套资源:(新高考)高考数学一轮复习素养练习(含解析)
(新高考)高考数学一轮复习素养练习 第5章 第3讲 第1课时 两角和与差的正弦、余弦和正切公式 (含解析)
展开这是一份(新高考)高考数学一轮复习素养练习 第5章 第3讲 第1课时 两角和与差的正弦、余弦和正切公式 (含解析),共14页。试卷主要包含了知识梳理,教材衍化等内容,欢迎下载使用。
第3讲 简单的三角恒等变换
一、知识梳理
1.两角和与差的正弦、余弦和正切公式
sin(α±β)=sin_αcos__β±cos_αsin__β;
cos(α∓β)=cos_αcos__β±sin_αsin__β;
tan(α±β)=.
2.二倍角的正弦、余弦、正切公式
sin 2α=2sin_αcos__α;
cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α;
tan 2α=.
3.三角函数公式的关系
常用结论
四个必备结论
(1)降幂公式:cos2α=,sin2α=.
(2)升幂公式:1+cos 2α=2cos2α,1-cos 2α=2sin2α.
(3)tan α±tan β=tan(α±β)(1±tan αtan β),
1+sin 2α=(sin α+cos α)2,
1-sin 2α=(sin α-cos α)2,
sin α±cos α=sin.
(4)辅助角公式
asin x+bcos x=sin (x+φ),其中tan φ=.
二、教材衍化
1.若cos α=-.α是第三象限的角,则sin=________.
解析:因为α是第三象限角,所以sin α=-=-,所以sin=-×+×=-.
答案:-
2.sin 347°cos 148°+sin 77°cos 58°=________.
解析:sin 347°cos 148°+sin 77°cos 58°
=sin(270°+77°)cos(90°+58°)+sin 77°cos 58°
=(-cos 77°)·(-sin 58°)+sin 77°cos 58°
=sin 58°cos 77°+cos 58°sin 77°
=sin(58°+77°)=sin 135°=.
答案:
3.化简:=________.
解析:原式=
===.
答案:
一、思考辨析
判断正误(正确的打“√”,错误的打“×”)
(1)两角和与差的正弦、余弦公式中的角α,β是任意角.( )
(2)两角和与差的正切公式中的角α,β是任意角.( )
(3)cos 80°cos 20°-sin 80°sin 20°=cos(80°-20°)=cos 60°=.( )
(4)公式tan(α+β)=可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( )
(5)存在实数α,使tan 2α=2tan α.( )
答案:(1)√ (2)× (3)× (4)× (5)√
二、易错纠偏
(1)不会用公式找不到思路;
(2)不会合理配角出错.
1.sin 15°+sin 75°的值是________.
解析:sin 15°+sin 75°=sin 15°+cos 15°=sin(15°+45°)=sin 60°=.
答案:
2.若tan α=3,tan(α-β)=2,则tan β=________.
解析:tan β=tan[α-(α-β)]=
==.
答案:
第1课时 两角和与差的正弦、余弦和正切公式
考点一 和差公式的直接应用(基础型)
复习指导1.会用向量的数量积推导出两角差的余弦公式.
2.能从两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系.
核心素养:逻辑推理、数学运算
1.已知sin α=,α∈,tan(π-β)=,则tan(α-β)的值为( )
A.- B.
C. D.-
解析:选A.因为sin α=,α∈,
所以cos α=-=-,
所以tan α==-.
因为tan(π-β)==-tan β,
所以tan β=-,
则tan(α-β)==-.
2.(2019·高考全国卷Ⅱ)已知α∈,2sin 2α=cos 2α+1,则sin α=( )
A. B.
C. D.
解析:选B.由2sin 2α=cos 2α+1,得4sin αcos α=1-2sin2α+1,即2sin αcos α=1-sin2α.因为α∈,所以cos α=,
所以2sin α=1-sin2 α,
解得sin α=,故选B.
3.已知α∈,sin α=.
(1)求sin的值;
(2)求cos的值.
解:(1)因为α∈,sin α=,
所以cos α=-=-,
故sin=sin cos α+cos sin α
=×+×=-.
(2)由(1)知sin 2α=2sin αcos α=2××=-,cos 2α=1-2sin2α=1-2×=,所以cos=cos cos 2α+sin sin 2α=×+×=-.
利用三角函数公式时应注意的问题
(1)首先要注意公式的结构特点和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.
(2)应注意与同角三角函数基本关系、诱导公式的综合应用.
(3)应注意配方法、因式分解和整体代换思想的应用.
考点二 三角函数公式的逆用与变形应用(基础型)
能运用三角函数公式进行简单的恒等变换(包括引导导出积化和差、和差化积、半角公式,但不要求记忆).
核心素养:数学运算
(1)在△ABC中,若tan Atan B=tan A+tan B+1,则cos C的值为( )
A.- B.
C. D.-
(2)(2018·高考全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.
【解析】 (1)由tan Atan B=tan A+tan B+1,可得=-1,
即tan(A+B)=-1,又(A+B)∈(0,π),
所以A+B=,则C=,cos C=.
(2)因为sin α+cos β=1,cos α+sin β=0,
所以sin2α+cos2β+2sin αcos β=1 ①,
cos2α+sin2β+2cos αsin β=0 ②,
①②两式相加可得sin2α+cos2α+sin2β+cos2β+2(sin αcos β+cos αsin β)=1,
所以sin(α+β)=-.
【答案】 (1)B (2)-
(1)三角函数公式活用技巧
①逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式;
②tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,注意公式的正用、逆用和变形使用.
(2)三角函数公式逆用和变形使用应注意的问题
①公式逆用时一定要注意公式成立的条件和角之间的关系;
②注意特殊角的应用,当式子中出现,1,,等这些数值时,一定要考虑引入特殊角,把“值变角”以便构造适合公式的形式.
1.(1-tan215°)cos215°的值等于( )
A. B.1
C. D.
解析:选C.(1-tan215°)cos215°=cos215°-sin215°=cos 30°=.
2.已知sin 2α=,则cos2=( )
A.- B.
C.- D.
解析:选D.cos2==+sin 2α=+×=.
3.(一题多解)cos 15°-4sin215°cos 15°=( )
A. B.
C.1 D.
解析:选D.法一:cos 15°-4sin215°cos 15°=cos 15°-2sin 15°·2sin 15°cos 15°=cos 15°-2sin 15°·sin 30°=cos 15°-sin 15°=2cos(15°+30°)=2cos 45°=.故选D.
法二:因为cos 15°=,sin 15°=,所以cos 15°-4sin215°·cos 15°=×-4××=×(-2+)=×(2-2)=.故选D.
考点三 三角公式的灵活应用(综合型)
三角公式的灵活应用实质是三角恒等变换,恒等变换前需清楚已知式中角的差异、函数名称的差异、运算结构的差异,寻求联系,实现转化.
角度一 三角函数公式中变“角”
(2020·黑龙江大庆实验中学考前训练)已知α,β∈,sin(α+β)=-,sin=,则cos=________.
【解析】 由题意知,α+β∈,sin(α+β)=-<0,所以cos(α+β)=,因为β-∈,所以cos=-,cos=cos=cos(α+β)cos+sin(α+β)sin=-.
【答案】 -
角度二 三角函数公式中变“名”
求值:-sin 10°.
【解】 原式=-sin 10°
=-sin 10°·
=-sin 10°·
=-2cos 10°=
=
===.
三角函数公式应用的解题思路
(1)角的转换:明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的变换技巧,及半角与倍角的相互转化,如:2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°,+=,=2×等.
(2)名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.
[提醒] 转化思想是实施三角恒等变换的主导思想,恒等变换前需清楚已知式中角的差异、函数名称的差异、运算结构的差异,寻求联系,实现转化.
求4sin 20°+tan 20°的值.
解:原式=4sin 20°+
==
==.
[基础题组练]
1.计算-sin 133°cos 197°-cos 47°cos 73°的结果为( )
A. B.
C. D.
解析:选A.-sin 133°cos 197°-cos 47°cos 73°
=-sin 47°(-cos 17°)-cos 47°sin 17°
=sin(47°-17°)=sin 30°=.
2.(2020·福建五校第二次联考)已知cos=,则sin 2α=( )
A. B.-
C. D.-
解析:选C.法一:因为cos=,所以sin 2α=sin=cos 2=2cos2-1=2×-1=.故选C.
法二:因为cos=,所以(cos α+sin α)=,所以cos α+sin α=,平方得1+sin 2α=,得sin 2α=.故选C.
3.(2020·陕西榆林模拟)已知=3cos(2π+θ),|θ|<,则sin 2θ=( )
A. B.
C. D.
解析:选C.因为=3cos(2π+θ),所以=3cos θ.
又|θ|<,故sin θ=,cos θ=,
所以sin 2θ=2sin θcos θ=2××=,
故选C.
4.(2020·武汉模拟)已知cos=,则cos x+cos=( )
A. B.-
C. D.±
解析:选A.因为cos=,
所以cos x+cos=cos x+cos x+sin x=
=cos=×=.
故选A.
5.(2020·湘东五校联考)已知sin(α+β)=,sin(α-β)=,则log等于( )
A.2 B.3
C.4 D.5
解析:选C.因为sin(α+β)=,sin(α-β)=,所以sin αcos β+cos αsin β=,sin αcos β-cos αsin β=,所以sin αcos β=,cos αsin β=,所以=5,所以log=log52=4.故选C.
6.(2020·洛阳统考)已知sin α+cos α=,则cos 4α=________.
解析:由sin α+cos α=,得sin2α+cos2α+2sin αcos α=1+sin 2α=,所以sin 2α=,从而cos 4α=1-2sin22α=1-2×=.
答案:
7.(2020·甘肃、青海、宁夏联考改编)若tan(α+2β)=2,tan β=-3,则tan(α+β)=________,tan α=________.
解析:因为tan(α+2β)=2,tan β=-3,
所以tan(α+β)=tan(α+2β-β)=
==-1.tan α=tan(α+β-β)==.
答案:-1
8.已知sin(α-β)cos α-cos(β-α)sin α=,β是第三象限角,则sin=________.
解析:依题意可将已知条件变形为
sin[(α-β)-α]=-sin β=,所以sin β=-.
又β是第三象限角,因此有cos β=-,
所以sin=-sin
=-sin βcos -cos βsin =.
答案:
9.已知tan α=2.
(1)求tan的值;
(2)求的值.
解:(1)tan===-3.
(2)=
===1.
10.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P.
(1)求sin的值;
(2)若角β满足sin(α+β)=,求cos β的值.
解:(1)由角α的终边过点P,得sin α=-,所以sin(α+π)=-sin α=.
(2)由角α的终边过点P,得cos α=-,
由sin(α+β)=,得cos(α+β)=±.
由β=(α+β)-α得
cos β=cos(α+β)cos α+sin(α+β)sin α,
所以cos β=-或cos β=.
[综合题组练]
1.(2020·河南百校联盟联考)已知α为第二象限角,且tan α+tan =2tan αtan -2,则sin等于( )
A.- B.
C.- D.
解析:选C.tan α+tan =2tan αtan -2⇒=-2⇒tan=-2,因为α为第二象限角,所以sin=,cos=-,则sin=-sin=-sin=cossin -sincos =-.
2.(创新型)公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,发现了黄金分割约为0.618,这一数值也可以表示为m=2sin 18°,若m2+n=4,则=( )
A.8 B.4
C.2 D.1
解析:选C.因为m=2sin 18°,m2+n=4,
所以n=4-m2=4-4sin218°=4cos218°.
所以=====2.故选C.
3.已知0<α<,且sin α=,则tan=________;=________.
解析:因为0<α<,且sin α=,所以cos α==,所以tan α==,
则tan=tan(α+)==7.
=
===.
答案:7
4.设α,β∈[0,π],且满足sin αcos β-cos αsin β=1,则sin(2α-β)+sin(α-2β)的取值范围为________.
解析:由sin αcos β-cos αsin β=1,得sin(α-β)=1,
又α,β∈[0,π],所以α-β=,
所以即≤α≤π,
所以sin(2α-β)+sin(α-2β)
=sin+sin(α-2α+π)
=cos α+sin α=sin.
因为≤α≤π,所以≤α+≤,
所以-1≤sin≤1,
即取值范围为[-1,1].
答案:[-1,1]
5.已知函数f(x)=sin,x∈R.
(1)求f的值;
(2)若cos θ=,θ∈,求f的值.
解:(1)f=sin=sin=-.
(2)f=sin
=sin=(sin 2θ-cos 2θ).
因为cos θ=,θ∈,所以sin θ=,
所以sin 2θ=2sin θcos θ=,
cos 2θ=cos2θ-sin2θ=,
所以f=(sin 2θ-cos 2θ)
=×=.
6.已知sin α+cos α=,α∈,sin=,β∈.
(1)求sin 2α和tan 2α的值;
(2)求cos(α+2β)的值.
解:(1)由题意得(sin α+cos α)2=,
即1+sin 2α=,所以sin 2α=.
又2α∈,所以cos 2α= =,
所以tan 2α==.
(2)因为β∈,所以β-∈,
又sin=,所以cos=,
于是sin 2=2sin·cos=.
又sin 2=-cos 2β,
所以cos 2β=-,
又2β∈,所以sin 2β=,
又cos2α==,α∈,
所以cos α=,sin α=.
所以cos(α+2β)=cos αcos 2β-sin αsin 2β
=×-×
=-.
相关试卷
这是一份新高考数学一轮复习课时讲练 第4章 第3讲 两角和与差的正弦、余弦和正切公式 (含解析),共17页。试卷主要包含了二倍角的正弦、余弦、正切公式,三角函数公式关系等内容,欢迎下载使用。
这是一份(新高考)高考数学一轮复习素养练习 第9章 第3讲 圆的方程 (含解析),共14页。试卷主要包含了知识梳理,教材衍化等内容,欢迎下载使用。
这是一份(新高考)高考数学一轮复习素养练习 第5章 第3讲 第1课时 高效演练分层突破 (含解析),共7页。