所属成套资源:高考数学一轮复习考点突破讲与练 (含解析)
高考数学一轮复习考点突破讲与练 第6章 第1节 数列的概念与简单表示 (含解析)
展开
这是一份高考数学一轮复习考点突破讲与练 第6章 第1节 数列的概念与简单表示 (含解析),共13页。
第六章 数列
第一节 数列的概念与简单表示
1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).
2.了解数列是自变量为正整数的一类特殊函数.
突破点一 数列的通项公式
1.数列的定义
按照一定顺序排列的一列数称为数列.数列中的每一个数叫做这个数列的项,数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做首项).
2.数列的通项公式
如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.
3.数列的递推公式
如果已知数列{an}的第1项(或前几项),且任何一项an与它的前一项an-1(或前几项)间的关系可以用一个式子来表示,即an=f(an-1)(或an=f(an-1,an-2)等),那么这个式子叫做数列{an}的递推公式.
4.Sn与an的关系
已知数列{an}的前n项和为Sn,则an=这个关系式对任意数列均成立.
一、判断题(对的打“√”,错的打“×”)
(1)所有数列的第n项都能使用公式表达.( )
(2)根据数列的前几项归纳出数列的通项公式可能不止一个.( )
(3)若已知数列{an}的递推公式为an+1=,且a2=1,则可以写出数列{an}的任何一项.( )
(4)如果数列{an}的前n项和为Sn,则对∀n∈N*,都有an+1=Sn+1-Sn.( )
答案:(1)× (2)√ (3)√ (4)×
二、填空题
1.数列{an}中,a1=2,且an+1=an-1,则a5的值为________.
解析:由a1=2,an+1=an-1,得a2=a1-1=1-1=0,a3=a2-1=0-1=-1,a4=a3-1=--1=-,a5=a4-1=--1=-.
答案:-
2.数列{an}定义如下:a1=1,当n≥2时,an=若an=,则n的值为________.
解析:困为a1=1,所以a2=1+a1=2,a3==,a4=1+a2=3,a5==,a6=1+a3=,a7==,a8=1+a4=4,a9==,所以n=9.
答案:9
3.数列{an}的通项公式an=,则-3是此数列的第________项.
解析:an===-,
∵-3=-,∴-3是该数列的第9项.
答案:9
4.已知Sn是数列{an}的前n项和,且Sn=n2+1,则数列{an}的通项公式是____________.
答案:an=
考法一 利用an与Sn的关系求通项
数列{an}的前n项和Sn与通项an的关系为an=通过纽带:an=Sn-Sn-1(n≥2),根据题目已知条件,消掉an或Sn,再利用特殊形式(累乘或累加)或通过构造成等差数列或者等比数列求解.
[例1] (1)(2019·化州模拟)已知Sn为数列{an}的前n项和,且log2(Sn+1)=n+1,则数列{an}的通项公式为____________.
(2)(2019·广州测试)已知数列{an}的各项均为正数,Sn为其前n项和,且对任意n∈N*,均有an,Sn,a成等差数列,则an=____________.
[解析] (1)由log2(Sn+1)=n+1,得Sn+1=2n+1,
当n=1时,a1=S1=3;当n≥2时,an=Sn-Sn-1=2n,
所以数列{an}的通项公式为an=
(2)∵an,Sn,a成等差数列,∴2Sn=an+a.
当n=1时,2S1=2a1=a1+a.
又a1>0,∴a1=1.
当n≥2时,2an=2(Sn-Sn-1)=an+a-an-1-a,
∴(a-a)-(an+an-1)=0.
∴(an+an-1)(an-an-1)-(an+an-1)=0,
∴(an+an-1)(an-an-1-1)=0,
∵an+an-1>0,∴an-an-1=1,
∴{an}是以1为首项,1为公差的等差数列,
∴an=n(n∈N*).
[答案] (1)an= (2)n
[方法技巧]
已知Sn求an的3个步骤
(1)先利用a1=S1求出a1;
(2)用n-1替换Sn中的n得到一个新的关系,利用an=Sn-Sn-1(n≥2)便可求出当n≥2时an的表达式;
(3)对n=1时的结果进行检验,看是否符合n≥2时an的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n=1与n≥2两段来写.
考法二 利用递推关系求通项
[例2] (1)在数列{an}中,a1=2,an+1=an+3n+2,求数列{an}的通项公式.
(2)在数列{an}中,a1=1,an=an-1(n≥2),求数列{an}的通项公式.
(3)在数列{an}中a1=1,an+1=3an+2,求数列{an}的通项公式.
(4)已知数列{an}中,a1=1,an+1=,求数列{an}的通项公式.
[解] (1)因为an+1-an=3n+2,
所以an-an-1=3n-1(n≥2),
所以an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=(n≥2).
当n=1时,a1=2=×(3×1+1),符合上式,
所以an=n2+.
(2)因为an=an-1(n≥2),
所以an-1=an-2,…,a2=a1.
由累乘法可得an=a1···…·==(n≥2).又a1=1符合上式,∴an=.
(3)因为an+1=3an+2,所以an+1+1=3(an+1),所以=3,所以数列{an+1}为等比数列,公比q=3,又a1+1=2,所以an+1=2·3n-1,所以an=2·3n-1-1.
(4)∵an+1=,a1=1,∴an≠0,
∴=+,即-=,又a1=1,则=1,
∴是以1为首项,为公差的等差数列.
∴=+(n-1)×=+,
∴an=(n∈N*).
[方法技巧] 典型的递推数列及处理方法
递推式
方法
示例
an+1=an+f(n)
叠加法
a1=1,an+1=an+2n
an+1=anf(n)
叠乘法
a1=1,=2n
an+1=Aan+B
(A≠0,1,B≠0)
化为等比数列
a1=1,an+1=2an+1
an+1=
(A,B,C为常数)
化为等差数列
a1=1,an+1=
1.已知数列{an}的前n项和为Sn,且a1=1,Sn=,则a2 019=( )
A.2 018 B.2 019
C.4 036 D.4 038
解析:选B 由题意知n≥2时,an=Sn-Sn-1=-,化为=,
∴==…==1,∴an=n.则a2 019=2 019.故选B.
2.已知数列{an}的前n项和为Sn,a1=1,Sn=2an+1,则Sn=( )
A.2n-1 B.n-1
C.n-1 D.n-1
解析:选B Sn=2an+1=2Sn+1-2Sn⇒3Sn=2Sn+1⇒=,故数列{Sn}为等比数列,公比是,又S1=1,所以Sn=1×n-1=n-1.故选B.
3.已知在数列{an}中,an+1=an(n∈N*),且a1=4,则数列{an}的通项公式an=____________.
解析:由an+1=an,得=,故=,=,…,=(n≥2),以上式子累乘得,=··…···=.因为a1=4,所以an=(n≥2).因为a1=4满足上式,所以an=.
答案:
4.已知数列{an}满足a1=2,an-an-1=n(n≥2,n∈N*),则an=____________.
解析:由题意可知,a2-a1=2,a3-a2=3,…,an-an-1=n(n≥2),
以上式子累加得,an-a1=2+3+…+n.
因为a1=2,所以an=2+(2+3+…+n)=2+=(n≥2).
因为a1=2满足上式,
所以an=.
答案:
突破点二 数列的性质
数列的分类
分类标准
类型
满足条件
按项数分类
有穷数列
项数有限
无穷数列
项数无限
按项与项间的大小关系分类
递增数列
an+1>an
其中n∈N*
递减数列
an+1an;
当n=2时,an+1-an=0,即an+1=an;
当n>2时,an+1-an…>an,
所以数列{an}中的最大项为a2或a3,且a2=a3=2×2=.故选A.
法二:(作商比较法)
==,
令>1,解得n0,故a1a4>a5>…>an,
所以数列{an}中的最大项为a2或a3,且a2=a3=2×2=.故选A.
[答案] A
[方法技巧]
求数列最大项或最小项的方法
(1)将数列视为函数f(x)当x∈N*时所对应的一列函数值,根据f(x)的类型作出相应的函数图象,或利用求函数最值的方法,求出f(x)的最值,进而求出数列的最大(小)项.
(2)通过通项公式an研究数列的单调性,利用(n≥2)确定最大项,利用(n≥2)确定最小项.
(3)比较法:
①若有an+1-an=f(n+1)-f(n)>0或an>0时,>1,则an+1>an,即数列{an}是递增数列,所以数列{an}的最小项为a1=f(1);
②若有an+1-an=f(n+1)-f(n)0时,
相关试卷
这是一份(课标全国版)高考数学第一轮复习讲练测 第26讲 数列的概念与简单表示(讲+练)原卷版+解析,文件包含课标全国版高考数学第一轮复习讲练测第26讲数列的概念与简单表示讲原卷版+解析docx、课标全国版高考数学第一轮复习讲练测第26讲数列的概念与简单表示练原卷版+解析docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
这是一份新高考数学一轮复习讲练测专题7.1数列的概念与简单表示(练)(含解析),共22页。试卷主要包含了【多选题】等内容,欢迎下载使用。
这是一份新高考数学一轮复习课时讲练 第6章 第1讲 数列的概念与简单表示法 (含解析),共17页。试卷主要包含了数列的有关概念,数列的分类等内容,欢迎下载使用。