2023年中考数学压轴题专项训练 压轴题04二次函数的应用大题专练(试题+答案)
展开
这是一份2023年中考数学压轴题专项训练 压轴题04二次函数的应用大题专练(试题+答案),文件包含2023年中考数学压轴题专项训练压轴题04二次函数的应用大题专练答案docx、2023年中考数学压轴题专项训练压轴题04二次函数的应用大题专练试题docx等2份试卷配套教学资源,其中试卷共67页, 欢迎下载使用。
2023年中考数学压轴题专项训练
专题04二次函数的应用大题专练(七大类型)
类型一、销售问题
例1.(2023·浙江湖州·统考一模)为鼓励大学毕业生自主创业,某市政府出台相关政策,本市企业提供产品给大学毕业生自主销售,政府还给予大学毕业生一定补贴.已知某种品牌服装的成本价为每件100元,每件政府补贴20元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=−3x+900.
(1)若第一个月将销售单价定为160元,政府这个月补贴多少元?
(2)设获得的销售利润(不含政府补贴)为w(元),当销售单价为多少元时,每月可获得最大销售利润?
(3)若每月获得的总收益(每月总收益=每月销售利润+每月政府补贴)不低于28800元,求该月销售单价的最小值.
类型二、图形面积问题
例2.(2023春·湖北武汉·九年级校联考期中)春回大地,万物复苏,又是一年花季到.某花圃基地计划将如图所示的一块长40 m,宽20 m的矩形空地划分成五块小矩形区域.其中一块正方形空地为育苗区,另一块空地为活动区,其余空地为种植区,分别种植A,B,C三种花卉.活动区一边与育苗区等宽,另一边长是10 m.A,B,C三种花卉每平方米的产值分别是2百元、3百元、4百元.
(1)设育苗区的边长为x m,用含x的代数式表示下列各量:花卉A的种植面积是_____m2,花卉B的种植面积是______m2,花卉C的种植面积是_______m2.
(2)育苗区的边长为多少时,A,B两种花卉的总产值相等?
(3)若花卉A与B的种植面积之和不超过560m2 ,求A,B,C三种花卉的总产值之和的最大值.
类型三、拱桥问题
例3.(2023·安徽黄山·统考一模)如图,国家会展中心大门的截面图是由抛物线ADB和矩形OABC构成.矩形OABC的边OA=34米,OC=9米,以OC所在的直线为x轴,以OA所在的直线为y轴建立平面直角坐标系,抛物线顶点D的坐标为(92,245).
(1)求此抛物线对应的函数表达式;
(2)近期需对大门进行粉刷,工人师傅搭建一木板OM,点M正好在抛物线上,支撑MN⊥x轴,ON=7.5米,点E是OM上方抛物线上一动点,且点E的横坐标为m,过点E作x轴的垂线,交OM于点F.
①求EF的最大值.②某工人师傅站在木板OM上,他能刷到的最大垂直高度是125米,求他不能刷到大门顶部的对应点的横坐标的范围.
类型四、投球问题
例4.(2023·浙江丽水·统考一模)某天,小明在足球场上练习“落叶球”(如图1),足球运动轨迹是抛物线的一部分,如图2,足球起点在A处,正对一门柱CD,距离AC=12m,足球运动到B的正上方,到达最高点2.5m,此时AB=10m.球门宽DE=5m,高CD=2m.
(1)以水平方向为x轴,A为原点建立坐标系,求足球运动轨迹抛物线的函数表达式.
(2)请判断足球能否进球网?并说明理由.
(3)小明改变踢球方向,踢球时,保持足球运动轨迹抛物线形状不变的前提下,足球恰好在点E处进入球网.若离A点8m处有人墙GH,且GH∥CF,人起跳后最大高度为2.2m,请探求此时足球能否越过人墙,并说明理由.
类型五、喷水问题
例5.(2023·山东潍坊·统考一模)如图①,灌溉车沿着平行于绿化带底部边线l的方向行驶,为绿化带浇水.喷水口H离地竖直高度OH=1.5米.如图②,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度DE=2米,竖直高度EF=1米.下边缘抛物线可以看作由上边缘抛物线向左平移得到,上边缘抛物线最高点A离喷水口的水平距离为2米,高出喷水口0.5米,灌溉车到l的距离OD为d米.
(1)求上边缘抛物线的函数表达式,并求喷出水的最大射程OC;
(2)求下边缘抛物线与x轴的正半轴交点B的坐标;
(3)要使灌溉车行驶时喷出的水能浇灌到整个绿化带(即矩形DEFC位于上边缘抛物线和下边缘抛物线所夹区域内),求d的取值范围.
类型六、几何动点问题
例6.(2023·山东青岛·统考一模)如图,在四边形ABCD中,AB∥CD,∠ABC=90°,AB=8cm,BC=6cm,AD=10cm,点P、Q分别是线段CD和AD上的动点.点P以2cm/s的速度从点D向点C运动,同时点Q以1cms的速度从点A向点D运动,当其中一点到达终点时,两点停止运动,将PQ沿AD翻折得到QP',连接PP'交直线AD于点E,连接AC、BQ.设运动时间为ts,回答下列问题:
(1)当t为何值时,PQ∥AC?
(2)求四边形BCPQ的面积Scm2关于时间ts的函数关系式;
(3)是否存在某时刻t,使点Q在∠PP'D平分线上?若存在,求出t的值;若不存在,请说明理由.
类型七、图形运动问题
7.(2023·天津·校联考一模)在平面直角坐标系中,O为原点,四边形AOBC是正方形,顶点A−4,0,点B在y轴正半轴上,点C在第二象限,△MON的顶点M0,5,点N5,0.
(1)如图①,求点B,C的坐标;
(2)将正方形AOBC沿x轴向右平移,得到正方形A'O'B'C',点A,O,B,C的对应点分别为A',O',B',C'.设OO'=t,正方形A'O'B'C'与△MON重合部分的面积为S.
①如图②,当1
相关试卷
这是一份【专项专练】中考数学大题压轴题精品模拟练习(含详细解析),共30页。
这是一份压轴题04二次函数的应用大题专练(七大类型)-2023年中考数学压轴题专项训练(全国通用),文件包含压轴题04二次函数的应用大题专练七大类型-2023年中考数学压轴题专项训练全国通用解析版docx、压轴题04二次函数的应用大题专练七大类型-2023年中考数学压轴题专项训练全国通用原卷版docx等2份试卷配套教学资源,其中试卷共88页, 欢迎下载使用。
这是一份2023年中考数学压轴题专项训练 压轴题03二次函数图象与性质大题专练(试题+答案),文件包含2023年中考数学压轴题专项训练压轴题03二次函数图象与性质大题专练答案docx、2023年中考数学压轴题专项训练压轴题03二次函数图象与性质大题专练试题docx等2份试卷配套教学资源,其中试卷共66页, 欢迎下载使用。