数学(河北卷)-学易金卷:2023年中考考前押题密卷(含考试版、全解全析、参考答案、答题卡)
展开这是一份数学(河北卷)-学易金卷:2023年中考考前押题密卷(含考试版、全解全析、参考答案、答题卡),文件包含数学河北卷全解全析docx、数学河北卷参考答案docx、数学河北卷考试版A4docx、数学河北卷考试版A3docx等4份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。
2023年河北中考考前押题密卷
数学·参考答案
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
C | B | C | D | B | B | D | C | D | B | D | A | B | C | C | B |
17.【答案】覆盖5点的圆的最小半径(答案不唯一)
18.【答案】 10
19.【答案】 3
20.【答案】(1)见解析
(2)39.
【分析】(1)利用完全平方公式、单项式乘多项式去括号、合并同类项,即可证明;
(2)根据数轴可得,解不等式得到x的整数解,据此计算即可.
【详解】(1)解:
,·········································································2分
∵为整数,
∴多项式能被5整除.······························································4分
(2)解:由题意得,
∴,即,························································6分
满足条件的所有整数有,,,,0,1,2,3,4,5,6,7,8,9.··················8分
∴满足条件的所有整数的和为.·················9分
【点睛】本题考查了整式的乘法,解不等式组,掌握相关的运算法则是解题的关键.
21.【答案】(1)见解析
(2)87分
【分析】(1)根据甲、乙两幅作品的总得分相等列式计算得到乙作品的使用性得分,即可补充完整条形统计图;
(2)设乙作品的使用性得分为x,依据题意得出不等式,即可求解.
【详解】(1)解:乙作品的使用性得分,··································2分
所以补充完整条形统计图如图,
;························································4分
(2)解:设乙作品的使用性得分为x,依据题意得,
,
,··········································································6分
因为x是整数,所以x最大值为87分.·················································9分
【点睛】此题考查了数据的描述与加权平均数的应用能力,关键是能根据统计图获得实际问题中的信息,并能通过求解加权平均数对问题进行分析.
22.【答案】探究:;发现:;拓展:当时,;理由见解析
【分析】探究:根据题意,列出二元次方程,解题即可;
发现:利用二次根式和完全平方公式解题即可;
拓展:利用比差法解题即可.
【详解】解:探究:,
则,解得
;····································································3分
发现:∵
∴,
即,
∴,
故答案为:;·········································································6分
拓展:当时,;
理由:,
.···········································································9分
【点睛】本题考查解二元一次方程组,二次根式和完全平方公式,掌握运算方法是解题的关键.
23.【答案】(1);
(2)
(3)小球能飞过这棵,理由见解析
(4)
【分析】(1)把点代入,求出b的值,再把解析式化为顶点式,即可求解;
(2)联立得:,即可求解;
(3)把分别代入,和,即可求解;
(4)根据二次函数的性质即可得到结论.
【详解】(1)解:把点代入得:
,解得:,
∴抛物线的解析式为,······················································1分
∵,
∴抛物线的对称轴为直线;··························································2分
(2)解:联立得:,
解得:或,
∴点的坐标为;··································································4分
(3)解:小球能飞过这棵,理由如下:
当时,
对于,,
对于,,
,
∴小球能飞过这棵树;································································7分
(4)解:根据题意得:小球在飞行的过程中离斜坡的距离为
,
∵,
∴小球在飞行的过程中离斜坡的最大高度为.·····································10分
【点睛】本题考查了二次函数的应用,其中涉及到两函数图象交点的求解方法,二次函数顶点坐标的求解方法,待定系数法求一次函数的解析式,难度适中利用数形结合与方程思想是解题的关键.
24.【答案】(1)
(2)
【分析】(1)根据的正切值求解即可;
(2)连接.首先证明出四边形为矩形,进而得到,然后利用勾股定理求解即可.
【详解】(1)∵,
∴.
答:连接水管的长为.····························································4分
(2)如图,连接.
∵,
∴四边形为平行四边形.
∵,
∴四边形为矩形,
∴.
∵,
∴,
∴.···················································10分
答:水盆两边缘C,D之间的距离为.
【点睛】本题主要考查了解直角三角形的实际应用,明确题意,准确构造直角三角形是解题的关键.
25.【答案】(1)
(2)①;②,
【分析】(1)先将点代入中,确定坐标,后设解析式计算即可.
(2)①根据题意,确定,代入计算即可.
②根据题意,确定,分三种情形计算即可.
【详解】(1)将点代入,得,
解得,
设,
∴,
解得,
∴的表达式为.····························································3分
(2)①根据题意,,
∴.·····································································5分
②根据题意,确定,
当M为对称中心时,根据题意,得,
解得;··········································································6分
当N为对称中心时,根据题意,得,
解得;···········································································7分
当E为对称中心时,根据题意,得,
解得;·········································································8分
∵直线分别与x轴、y轴交于A,B两点,
∴,
∵点M在线段上,
∴,
∴(舍去)
∴m的值为,.····································································10分
【点睛】本题考查了直线的解析式确定,中点坐标公式,熟练掌握待定系数法,中点坐标公式是解题的关键.
26.【答案】(1)7
(2)
(3)
(4)半圆与正方形的边相切,点到切点的距离为1+或4-或.
【分析】(1)找到当割线AM经过圆心时最大,根据正方形于半圆的半径求解决可;
(2)利用三角函数求出∠CFB,然后利用弧长公式计算即可;
(3)取CD中点E,过点E作EH⊥CD于E,交AB于H,根据在旋转过程中圆心到和的距离相等,当点O在EH上时,OD=OC,根据EH为CD的垂直平分线,DCDE=CE=2,∠CEH=90°,可证四边形EHBC为矩形,得出HB=EC=2,EH=BC=4,根据勾股定理即可;
(4)半圆O与正方形ABCD的边相切共有三种情况:当半圆O于CD相切于Q,过Q作QP⊥CD于Q,交AB于P,当半圆O与AD相切于K,过K作KL⊥AD于K,交BC于L,当半圆O于AB相切于F点,FQ⊥AB于F,交CD于Q求解即可.
【详解】(1)解:是半圆上任意一点,当AM经过圆心时AM值最大为AB+OG=4+3=7,
故答案为7;·······································································2分
(2)解:在Rt△FBC中,FB=3,BC=4,
∴tan∠CFB=,
∴∠CFB=53°,
∴点转过的弧长为:;···············································4分
(3)解:取CD中点E,过点E作EH⊥CD于E,交AB于H,
在旋转过程中圆心到和的距离相等,
当点O在EH上时,OD=OC,
∵EH为CD的垂直平分线,
∴DE=CE=2,∠CEH=90°,
∵四边形ABCD为正方形,
∴∠DCB=∠ABC=90°=∠CEH,
∴四边形EHBC为矩形,
∴HB=EC=2,EH=BC=4,
∴FH=FB-HB=3-2=1,
在Rt△OFH中,,
∴EO=EH-OH=,
∴;··········································8分
(4)解:半圆O与正方形ABCD的边相切共有三种情况:
当半圆O于CD相切于Q,过Q作QP⊥CD于Q,交AB于P,
∵点Q为切点,PQ⊥CD,
∴圆心O在PQ上,OQ=3,
∵四边形ABCD为正方形,
∴∠DCB=∠ABC=∠CQP=90°,
∴四边形QPBC为矩形,
∴QP=BC=4,QC=PB,
∴OP=PQ-OQ=1,
∴FP=,
∴PB=FB-FP=3-,
∴QC=PB=3-,
∴DQ=DC-QC=4-(3-)=1+;
当半圆O与AD相切于K,过K作KL⊥AD于K,交BC于L,
∵点K为切点,KL⊥AD,
∴点O在KL上,
∴∠D=∠DCB=∠DKL=90°,
∴四边形DKLC为矩形,
∴KL=DC=4,EK=QO,
同理可证OPBL为矩形,
∴OL=PB,
∵OK=OF=3,
∴OL=KL-OK=1,
∴PF=FB-PB=3-1=2,
在Rt△FOP中,OP=,
∴DK=QO=QP-OP=4-;
当半圆O于AB相切于F点,FQ⊥AB于F,交CD于Q,
∴AP=AB-PB=1,
∴DF=;····························································12分
综合以上半圆与正方形的边相切,点到切点的距离为1+或4-或.
【点睛】本题考查正方形性质,图形旋转,切线性质,勾股定理,矩形判定与性质,锐角三角函数,弧长公式,掌握正方形性质,图形旋转,切线性质,勾股定理,矩形判定与性质,锐角三角函数,弧长公式是解题关键.
相关试卷
这是一份数学(湖北武汉卷)-学易金卷:2023年中考考前押题密卷(含考试版、全解全析、参考答案、答题卡),文件包含数学湖北武汉卷全解全析docx、数学湖北武汉卷参考答案docx、数学湖北武汉卷考试版A4docx、数学湖北武汉卷考试版A3docx等4份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。
这是一份数学(江苏无锡卷)-学易金卷:2023年中考考前押题密卷(含考试版、全解全析、参考答案、答题卡),文件包含数学江苏无锡卷全解全析docx、数学江苏无锡卷参考答案docx、数学江苏无锡卷考试版A4docx、数学江苏无锡卷考试版A3docx等4份试卷配套教学资源,其中试卷共51页, 欢迎下载使用。
这是一份2023年中考考前押题密卷:数学(重庆卷)(全解全析),共24页。