湘教版八年级下册4.4 用待定系数法确定一次函数表达式图片课件ppt
展开1.理解和掌握用待定系数法求一次函数的解析式,了解待定系数法的思维方式与特点;(重点)2. 明确两个条件确定一个一次函数、一个条件确定一个正比例函数的基本事实;3.通过一次函数图象和性质的研究,体会数形结合在解决问题中的作用,并能运用性质、图象及数形结合解决相关函数问题.(难点)
前面,我们学习了一次函数及其图象和性质,你能写出两个具体的一次函数解析式吗?如何画出它们的图象?
思考:反过来,已知一个一次函数的图象经过两个具体的点,你能求出它的解析式吗?
两点法——两点确定一条直线
引例:某物体沿一个斜坡下滑,它的速度v(m/s)与其下滑时间t(s)的关系如右图所示: (1)请写出v与t的关系式.(2)下滑3 s时物体的速度是多少?
解:(1)v=2.5t.
(2)v=2.5×3=7.5 (m/s).
例1 求正比例函数 的表达式.
解:由正比例函数的定义知m2-15=1且m-4≠0,∴m=-4,∴y=-8x.
方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0.
想一想:确定正比例函数的表达式需要几个条件? 确定一次函数的表达式呢?
如图,已知一次函数的图象经过P(0,-1),Q(1,1)两点. 怎样确定这个一次函数的解析式呢?
一次函数的一般形式是y=kx+b(k,b为常数,k≠0),要求出一次函数的解析式,关键是要确定k和b的值(即待定系数).
∵P(0,-1) 和Q(1,1)都在该函数图象上, 因此它们的坐标应满足y=kx+b , 将这两点坐标代入该式中,得到一个关于k,b的二元一次方程组:
∴这个一次函数的解析式为y = 2x- 1.
像这样,通过先设定函数解析式(确定函数模型),再根据条件确定解析式中的未知系数,从而求出函数解析式的方法称为待定系数法.
例2 如果知道一个一次函数,当自变量x=4时,函数值y=5;当x=5时,y=2.你能画出它的图象,并写出函数表达式吗?
解:∵y是x的一次函数,设其表达式为y=kx+b.由题意得 解得
4k+b=5,5k+b=2,
∴函数表达式为 y=-3x+17,图象如图所示.
利用二元一次方程组求一次函数表达式的一般步骤:1.用含字母的系数设出一次函数的表达式:y=kx+b.2.将已知条件代入上述表达式中得k,b的二元一次方程组.3.解这个二元一次方程组得k,b.4.进而求出一次函数的表达式.
1.已知一次函数y=kx+5的图象经过点(-1,2),则k=______.2.已知函数y=2x+b的图像经过点(a,7)和(-2,a),则这个函数的表达式为____________.
例3:正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B为一次函数的图象与y轴的交点,且OA=2OB.求正比例函数与一次函数的表达式.
解:设正比例函数的表达式为y1=k1x,一次函数的表达式为y2=k2x+b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k1,3=4k2+b.∴k1= ,即正比例函数的表达式为y= x.
∵OA= =5,且OA=2OB,∴OB= .∵点B在y轴的负半轴上,∴B点的坐标为(0,- ).又∵点B在一次函数y2=k2x+b的图象上,∴- =b,代入3=4k2+b中,得k2= .∴一次函数的表达式为y2= x- .
某种拖拉机的油箱可储油40L,加满油并开始工作后,油箱中的剩余油量y(L)与工作时间x(h) 之间为一次函数关系,函数图象如图所示.(1)求y关于x的函数表达式;(2)一箱油可供拖拉机工作几小时?
y = -5x + 40.
根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.
1.一次函数y=kx+b(k≠0)的图象如图,则下列结论正确的是 ( ) A.k=2 B.k=3 C.b=2 D.b=3
2. 如图,直线l是一次函数y=kx+b的图象,填空: (1)b=______,k=______; (2)当x=30时,y=______; (3)当y=30时,x=______.
3.已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.
解:设一次函数的表达式为y=kx+b,根据题意得,∴-5=2k+b,5=b,解得b=5,k=-5.∴一次函数的表达式为y=-5x+5.
解:设直线l为y=kx+b, ∵l与直线y=-2x平行,∴k= -2. 又∵直线过点(0,2), ∴2=-2×0+b, ∴b=2, ∴直线l的表达式为y=-2x+2.
4.已知直线l与直线y=-2x平行,且与y轴交于点(0,2),求直线l的表达式.
5.在弹性限度内,弹簧的长度y(厘米)是所挂物体质量x(千克)的一次函数.一根弹簧不挂物体时长14.5厘米;当所挂物体的质量为3千克时,弹簧长16厘米.请写出y与x之间的关系式,并求当所挂物体的质量为4千克时弹簧的长度.
解:设y=kx+b(k≠0) 由题意得:14.5=b, 16=3k+b, 解得:b=14.5 ; k=0.5. ∴在弹性限度内,y=0.5x+14.5. 当x=4时,y=0.5×4+14.5=16.5(厘米).故当所挂物体的质量为4千克时弹簧的长度为16.5厘米.
7. 已知一次函数的图象过点(0,2),且与两坐标轴围成的三角形的面积为2,求此一次函数的表达式.
解:设一次函数的表达式为y=kx+b(k≠0) ∵一次函数y=kx+b的图象过点(0,2), ∴b=2 ∵一次函数的图象与x轴的交点是( ,0),则 解得k=1或-1. 故此一次函数的表达式为y=x+2或y=-x+2.
初中数学浙教版八年级上册第5章 一次函数5.3 一次函数评优课ppt课件: 这是一份初中数学浙教版八年级上册第5章 一次函数5.3 一次函数评优课ppt课件,共19页。PPT课件主要包含了学习目标,问题引入,问题解决,y2x-1,典例解析,二元一次,总结提升,由题意得,∴y-x+2,针对练习等内容,欢迎下载使用。
数学第十九章 一次函数19.2 一次函数19.2.2 一次函数优秀课件ppt: 这是一份数学第十九章 一次函数19.2 一次函数19.2.2 一次函数优秀课件ppt,共18页。PPT课件主要包含了问题引入,合作探究,知识要点,做一做,y2x-1,二元一次,归纳总结,由题意得,∴y-x+2,答案y-4x+2等内容,欢迎下载使用。
初中数学人教版八年级下册19.2.2 一次函数课文ppt课件: 这是一份初中数学人教版八年级下册19.2.2 一次函数课文ppt课件,共23页。PPT课件主要包含了学习目标,知识精讲,y2x-1,针对练习,二元一次,由题意得,∴y-x+2,典例解析,达标检测,小结梳理等内容,欢迎下载使用。