山东省2023年高考化学模拟题汇编-09化学反应的热效应
展开山东省2023年高考化学模拟题汇编-09化学反应的热效应
一、单选题
1.(2023·山东潍坊·统考模拟预测)下列实验装置或操作正确的是
A.用图1装置测定中和反应的反应热
B.用图2装置测定化学反应速率
C.用图3装置分离乙醚和苯
D.用图4装置振荡萃取、静置分层后,打开分液漏斗上方的玻璃塞再进行分液
2.(2023·山东日照·统考一模)CO2电催化还原制备CH3OH的反应历程如图所示(部分物质未画出)。
主反应:
副反应:
下列说法正确的是
A.催化剂可同时降低主、副反应的活化能,从而降低、
B.*与结合形成*
C.反应过程中有极性键和非极性键的断裂与生成
D.反应为决速步
3.(2023·山东济宁·统考一模)利用下列装置进行实验,能达到实验目的的是
A.图Ⅰ装置可制备固体
B.图Ⅱ装置可测定中和反应的反应热
C.图Ⅲ装置可实现铁上镀铜,a极为铜,电解质溶液可以是溶液
D.图Ⅳ装置可检验1-溴丁烷和氢氧化钠乙醇溶液反应的产物
4.(2023·山东菏泽·校考一模)活泼自由基与氧气反应一直是研究人员关注的焦点。理论研究表明,HNO自由基与O2反应历程的能量变化如图所示。下列说法错误的是
A.产物P2比P1稳定
B.该反应为放热反应
C.相同条件下,由中间产物Z转化为不同产物的速率:v(P1)
二、多选题
5.(2023·山东济南·山东省实验中学校考一模)东南大学化学化工学院张袁健教授探究和分别催化分解的反应机理,部分反应历程如图所示(MS表示吸附在催化剂表面物种;TS表示过渡态):
下列说法错误的是
A.催化效果:催化剂高于催化剂
B.催化:
C.催化剂比催化剂的产物更容易脱附
D.催化分解吸热,催化分解放热
6.(2023·山东潍坊·统考一模)下列实验方法或操作,可以达到实验目的的是
标号
实验目的
实验方法或操作
A
测定中和反应的反应热
酸碱中和滴定的同时,用温度传感器采集锥形瓶内溶液的温度
B
探究浓度对化学反应速率的影响
量取相同体积、不同浓度的HCl溶液,分别与等质量的大理石发生反应,对比现象
C
探究室温下的电离程度
用pH计测量室温下0.1 mol·L⁻¹氨水的pH
D
通过官能团的检验,鉴别乙醇和乙醛
取两种待测液体于两支洁净的试管中,加入新制氢氧化铜悬浊液,加热至沸腾,观察现象
A.A B.B C.C D.D
三、原理综合题
7.(2023·山东·济宁一中校联考模拟预测)氢气在工业上具有重要的应用,从炼钢到食品无处不在,未来随着“碳中和”战略的推进,氢气的使用率必将得到进一步的提升。
(1)用H2可以将CO2转化为CH4,该过程中涉及的反应如下。
①CO2(g)+H2(g)CO(g)+H2O(g) △H1=+41kJ•mol-1
②CO2(g)+4H2(g)CH4(g)+2H2O(g) △H2=-205kJ•mol-1
③CO(g)+H2(g)C(s)+H2O(g) △H3=-131kJ•mol-1
④C(s)+2H2O(g)CH4(g)+CO2(g) △H4=-25kJ•mol-1
则反应CO(g)+3H2(g)CH4(g)+H2O(g)的△H=_____,反应③、④的存在会导致甲烷的产率_____(填“增大”“减小”或“不变”)。
(2)微观动力学研究表明,在催化剂作用下,反应CO(g)+3H2(g)CH4(g)+H2O(g)的能量变化如图所示(吸附在催化剂表面的物质用“*”标注)。
在该反应历程中,最大的能垒E正=_____eV,请写出该步骤反应的化学方程式:_____。
(3)在一定条件下,向某2L恒容密闭容器中充入2molCO2、4molH2,发生反应②,测得反应10min时,不同温度下氢气的转化率如图所示。
①a、b、c三点对应的v(CH4)逆由大到小的顺序为_____(用a、b、c表示),请解释原因:_____;T2温度下,若起始时容器内的压强为3MPa,前10min内v(H2)=_____MPa•min-1,该温度下反应的Kp=_____(MPa)-2(保留一位小数,Kp为以分压表示的平衡常数,分压=总压×物质的量的分数)。
②已知速率方程v正=k正•p4(H2)•p(CO2)、v逆=k逆•p2(H2O)•p(CH4),k正、k逆只与温度有关。若T2时,k逆=2(MPa)-2•min-1,则该温度下k正=_____(MPa)-4•min-1。
(4)科学家一直研究开发氢能源,我国科学家研发的循环制氢和贮氢的新工艺如图。下列有关说法正确的是_____(填字母)。
A.ZnFe2O4中Fe为+6价
B.ZnFe2O4降低了H2O分解的活化能
C.反应2中需要不断地补充ZnO、Fe3O4
D.反应3通入氩气作为保护气是因为氩气的化学性质稳定
E.贮氢过程可表示为3H2+2Mg2Cu=3MgH2+MgCu2
8.(2023·山东·潍坊一中校联考模拟预测)环戊烯()无色液体,主要用作共聚单体、溶剂,也可用于有机合成。在催化剂作用下,可通过环戊二烯()选择性氧化制得,体系中同时存在如下反应:
反应I:(g)+H2(g)(g) △H1=-100.3kJ•mol-1
(g)反应II:(g)+H2(g)(g) △H2=-109.4kJ•mol-1
反应III:(g)+(g)2(g) △H3
已知:选择性=×100%
回答下列问题:
(1)反应III_____(“是”或者“不是”)自发反应。
(2)为研究上述反应的平衡关系,在T℃下,向某密闭容器中加入amol环戊二烯和4molH2,测得平衡时,容器中环戊二烯和环戊烷()的物质的量相等,环戊烯的选择性为80%,此时H2的转化率为_____%,反应III以物质的量分数表示的平衡常数Kx3=_____。
(3)为研究不同温度下催化剂的反应活性,保持其他条件不变,测得在相同时间内,上述反应的转化率和选择性与温度的关系如图所示。环戊二烯氢化制环戊烯的最佳温度为_____;30℃以上时,环戊烯的选择性降低的可能原因是_____(填字母)。
A.催化剂活性降低 B.平衡常数变大 C.反应活化能减小
(4)实际生产中采用双环戊二烯()解聚成环戊二烯:(g)2(g) △H>0。若将3mol双环戊二烯通入恒容密闭容器中,分别在T1和T2温度下进行反应。曲线A表示T2温度下n(双环戊二烯)的变化,曲线B表示T1温度下n(环戊二烯)的变化,T2温度下反应到a点恰好达到平衡。
①曲线B在T1温度下恰好达到平衡时的点的坐标为(m,n),则m_____(填“>”、“<”或“=”)2,由图像计算n的取值范围是_____。
②T2温度下,若某时刻容器内气体的压强为起始时的1.5倍,则此时v(正)_____(填“>”、“<”或“=”)v(逆)。
9.(2023·山东潍坊·统考模拟预测)甲醇合成丙烯有“一步法”和“两步法”两种合成方式,“一步法”是在催化剂的作用下由甲醇直接合成丙烯;“两步法”则分两步合成,其热化学方程式如下:
反应I:甲醇醚化反应(DME)
反应II:含氧化合物制丙烯反应(OTP)
已知部分键能数据如下:
化学键
C-C
C=C
C-H
H-H
O-H
C=O
C-O
键能/
356
615
413
436
462
745
360
回答下列问题:
(1)“一步法”合成丙烯的热化学方程式为___________。合成丙烯时有乙烯等副产物,若选择作载气时,保持总压不变,调控甲醇和的不同分压,各产物的选择性如下表所示(其他产物略):
分压/MPa
分压/MPa
丙烯选择性/%
乙烯选择性/%
0.10
0
30.9
7.51
0.08
0.02
32.0
7.42
0.04
0.06
34.8
7.03
0.02
0.08
36.7
6.48
0.01
0.09
39.4
5.43
分析表中数据:要合成得到更多的丙烯,应控制甲醇的最佳分压为___________MPa。
(2)已知:。温度为500K时,在密闭反应器中加入2mol ,若只发生反应Ⅰ,达平衡状态时,体系中的物质的量分数为___________(填序号)。A. B. C. D.
(3)“两步法”中,在恒容密闭容器中通入甲醇,初始压强为,反应达到平衡时压强为,则平衡混合体系中,丙烯的体积分数为___________(用含、的式子表示,下同),若平衡时甲醇的转化率为60%,则反应II(OTP)的平衡常数___________。
(4)“两步法”中存在反应Ⅲ: △H,同时也会有芳香烃等副产品,其中丙烯和芳香烃选择性与不同温度下反应I进行的程度的关系如图所示。要提高丙烯的选择性,可采取的措施是___________,当温度高于285℃后,丙烯的选择性降低,其原因是___________。
10.(2023·山东枣庄·统考二模)船舶柴油机发动机工作时,反应产生的尾气是空气主要污染物之一,研究的转化方法和机理具有重要意义。
已知:
(1)氧化脱除NO的总反应是 ________。
(2)该反应过程有两步:,反应中各物质浓度变化如图所示。则速率常数___________(填“>”、“<”或“≈”),原因是___________。
(3)已知:的反应历程分两步:
步骤
反应
活化能
正反应速率方程
逆反应速率方程
I
(快)
II
(慢)
①则反应I与反应II的活化能:___________(填“>”“<”或“=”)。
反应的平衡常数___________(用、、、表示)。
②在400k、初始压强为的恒温刚性容器中,按通入NO和,一定条件下发生反应。达平衡时NO转化率为90%,转化率为40%。则的平衡常数___________(分压=总压×物质的量分数;理想气体状态方程,)。
(4)某研究小组将、和一定量的充入2L密闭容器中,在催化剂表面发生反应(),NO的转化率随温度的变化情况如图所示:
①5min内,温度从420K升高到580K,此时段内NO的平均反应速率___________(保留3位有效数字)。
②无氧条件下,NO生成的转化率较低,原因可能是___________。
11.(2023·山东济南·山东省实验中学校考一模)二氧化碳催化加氢制取二甲醚(DME)有利于减少温室气体二氧化碳,制取过程发生如下反应:
反应Ⅰ.
反应Ⅱ.
反应Ⅲ.
回答下列问题:
(1)T1℃时,向恒压容器中充入0.2 mol CO2(g)和0.6 mol H2(g),若在该条件下只发生反应Ⅰ,达平衡时,放出4 kJ能量;若向相同容器中充入0.4 mol CH3OH(g)和0.4 mol H2O(g),吸收11.8 kJ能量,则反应Ⅰ的△H1=___________kJ/mol。
(2)已知反应Ⅲ的速率方程可表示为,,lgk与温度的关系如图所示,T2℃下,图中A、B点的纵坐标分别为a-0.7、a-1。T2℃、200 MPa时,向恒压容器中充入CO2(g)和H2(g)混合气体制取二甲醚(DME),发生上述三个反应,平衡后,测得CH3OH(g)、CH3OCH3(g)和CO(g)体积分数分别为5%、10%、5%,则H2O(g)体积分数为___________,CH3OCH3(g)产率为___________,生成CH3OCH3(g)的选择性为___________,反应Ⅰ的Kp=___________(CH3OCH3选择性;10-0.3=0.50)。
(3)在压强一定的条件下,将CO2和H2按一定比例、流速通过装有催化剂的反应管,测得“CO2的转化率”及“CH3OCH3(g)选择性”和“CO、CH3OH选择性的和”分别与温度的关系如图所示,回答下列问题:
①曲线C表示___________:
②T1-T5温度之间,升高温度,比值将___________(填“增大”、“减小”或“不变”)。
12.(2023·山东青岛·统考一模)与的干法重整(DRM)反应可同时转化两种温室气体,并制备CO和。主要反应如下:
反应I:;
反应Ⅱ:;
反应Ⅲ:
已知:反应I、Ⅱ的自发均需高温条件。
(1)上述三个反应的平衡常数、与温度T关系如图1所示。图中a点代表的是_______(填“Ⅰ”、“Ⅱ”或“Ⅲ”)反应的,_______。
(2)向密闭容器中,通入和,若仅考虑上述反应,平衡时、、、的物质的量随温度T的变化如图2所示。
时,的物质的量分数为_______,用各物质的物质的量分数表示反应Ⅲ的平衡常数_______。后随温度升高,物质的量减少的原因为_______。
(3)DRM反应目前普遍存在的一个难题是积碳,该过程与两个反应有关①;②。目前积碳问题的解决方案主要有两种: A.提高原料气中的占比;B.在常规的催化剂中添加,使其在催化剂表面与形成共熔物。试解释这两种方法可以有效抑制积碳的原因_______(答出两条即可)。
(4)使用复合催化剂,可显著提高二氧化碳的转化率,实现碳氢分离,并得到富含的产物,催化机理如图3所示。请用化学方程式解释循环的原理_______。
13.(2023·山东·统考一模)甲烷在化学工业中应用广泛。回答下列问题:
(1)H2捕集CO2合成CH4涉及下列反应:
I.4H2(g)+CO2(g)⇌CH4(g)+2H2O(g) △H1平衡常数K1
II.H2(g)+CO2(g)⇌CO(g)+H2O(g) △H2平衡常数K2
①相关物质相对能量大小如图所示,则△H1=_______kJ·mol-1,升高温度,_______(填“增大”或“减小”)。
②起始物=3时,反应在不同条件下达到平衡。240℃甲烷的物质的量分数x(CH4)与压强p的变化关系、5×105Pa时(CH4)与温度T的变化关系如图所示。图中对应A、B两点的速率:vA(正)_______vB(逆)(填“大于”、“小于”或“等于”);若C点CH4与CO的分压相同,则p(H2O)=_______Pa,反应I以物质的量分数表示的平衡常数KxI=_______。
(2)CH4还原CO2是实现“双碳”经济的有效途径之一、恒压、750℃时,CH4和CO2反应经如下流程(主要产物已标出)可实现CO2高效转化。
其中过程II主要发生如下反应:
i.CaO(s)+CO2(g)⇌CaCO3(s)
ii.2Fe3O4(s)+8H2(g)⇌6Fe(s)+8H2O(g)
iii.Fe3O4(s)+4CO(g)⇌3Fe(s)+4CO2(g)
过程II平衡后通入He,反应iii的化学平衡将_____(填“正向移动”“逆向移动”或“不移动”),重新平衡时,n(CO2)_______(填“增大”、“减小”或“不变”),p(CO)_____(填“增大”、“减小”或“不变”)。
14.(2023·山东临沂·统考一模)以CO2、H2为原料合成CH3OH的反应是研究热点之一,该反应体系涉及的反应如下:
I.CO2(g)+3H2(g)CH3OH(g)+H2O(g) △H1=-49kJ•mol-1
II.CO2(g)+H2(g)CO(g)+H2O(g) △H2
回答下列问题:
(1)已知25℃和101kPa下,H2(g)、CO(g)的燃烧热分别为285.8kJ•mol-1、283.0kJ•mol-1,H2O(l)=H2O(g) △H=+44kJ•mol-1,则△H2=_____kJ•mol-1。
(2)在恒压密闭容器中,按照n(CO2):n(H2)=1:3投料进行反应,反应Ⅰ、Ⅱ以物质的分压表示的平衡常数Kp随温度T的变化关系如图1所示(体系总压为10kPa)。
①反应Ⅱ对应图1中_____(填“m”或“n”);A点对应温度下体系达到平衡时CO2的转化率为80%,反应Ⅰ的Kp=_____kPa-2(保留两位有效数字)。
②通过调整温度可调控平衡时的值。B点对应温度下,平衡时=400,则p(H2)= _____kPa。
(3)在密闭容器中,保持投料比不变,将CO2和H2按一定流速通过反应器,一段时间后,测得CO2转化率(α)和甲醇选择性[x(CH3OH)=×100%]随温度(T)变化关系如图2所示。若233~250℃时催化剂的活性受温度影响不大,则236℃后图中曲线下降的原因是_____;若气体流速过大,CO2的转化率会降低,原因是______。
(4)向恒温恒压的两个密闭容器甲(T℃、P1)、乙(T℃、P2)中,分别充入物质的量均为amol的CO2和H2,若只发生反应Ⅱ,其正反应速率正=k正p(CO2)p(H2),p为气体分压。若甲、乙容器平衡时正反应速率之比甲:乙=16:25,则甲、乙容器的体积之比为______。
15.(2023·山东日照·统考一模)溴代烷的制备,常规工艺分“氧化”和“溴化”两个过程,通常以O2在合适温度下催化氧化HBr制备Br2(g)(溴易液化,注意控制温度和压强),再利用Br2完成溴代过程来制备;新工艺是将烷烃、HBr和O2混合,直接催化“氧化溴化”得到溴代烷。回答下列问题:
(1)已知:T K时,部分物质的相对能量如下表:
物质
HBr(g)
(g)
(g)
(g)
相对能量/
x
y
z
w
此温度下,在恒容密闭容器中充入4mol HBr(g)和1mol O2(g)发生“氧化”,测得反应物的平衡转化率为60%。若保持其他条件不变,改为绝热状态,平衡时测得放出热量为Q kJ,则下列关系正确的是_______(填标号)。A. B.
C. D.
(2)“溴化”时容器体积可变。在温度为T K时,向10 L容器中投入初始浓度均为0.1的(g)和(g),发生反应:。保持温度不变,压缩容器体积,测得不同容积下(g)的平衡浓度如下表:
容器体积V/L
10
3
m
0.09
0.25
当容器体积从10 L缩小到3 L时,测得此时容器内仅有四种气态组分,平衡_______移动(填“正向”“逆向”或“不”),m=_______;容器体积缩小到 L时,平衡_______移动(填“正向”“逆向”或“不”)。T K时,此反应在容积为10L和L时化学平衡常数分别为、,则_______(填“大于”“小于”或“等于”)。
(3)新工艺中,“氧化溴化”反应: 。反应起始物料n()、n(HBr)、n()分别为2mol、2mol、1mol时,在不同条件下达到平衡,设体系中的物质的量分数为x(),在T为500K下的x()~p、在p为下的如图所示。
a点对应的压强为_______;b点对应的反应条件为_______,此时_______(保留三位有效数字)。
16.(2023·山东菏泽·统考一模)二氧化碳的排放日益受到环境和能源领域的关法,其综合利用是研究的重要课题。回答下列问题:
(1)已知下列热化学方程式:
反应Ⅰ:
反应Ⅱ:
则反应 _______。
(2)①向体积均为V L的恒压密闭容器中通入1 mol 、3 mol ,分别在0.1MPa和1MPa下发生上述反应Ⅰ和反应Ⅱ,分析温度对平衡体系中、CO、的影响,设这三种气体物质的量分数之和为1,其中CO和的物质的量分数与温度变化关系如图所示。下列叙述能判断反应体系达到平衡的是_______(填标号)。
A.的消耗速率和的消耗速率相等
B.混合气体的密度不再发生变化
C.容器内气体压强不再发生变化
②图中表示1MPa时的物质的量分数随温度变化关系的曲线是_______(填字母),理由是_______;550℃、0.1MPa条件下,t min反应达到平衡,平衡时容器的体积为_______L,反应Ⅱ的_______。(以分压表示,分压=总压×物质的量分数)
(3)一种从高炉气回收制储氢物质HCOOH的综合利用示意图如图所示:
①某温度下,当吸收池中溶液的pH=8时,此时该溶液中_______[已知:该温度下,]。
②利用电化学原理控制反应条件能将电催化还原为HCOOH,电解过程中还伴随着析氢反应,若生成HCOOH的电解效率为80%,当电路中转移3 mol 时,阴极室溶液的质量增加_______g[B的电解效率]。
17.(2023·山东·日照一中校联考模拟预测)随着我国碳达峰、碳中和目标的确定,含碳化合物的综合利用备受关注。CO2和H2合成甲醇是CO2资源化利用的重要方法。以CO2、H2为原料合成CH3OH涉及的反应如下:
反应Ⅰ:
反应Ⅱ:
反应Ⅲ:
回答下列问题:
(1)反应Ⅰ的=_______;已知由实验测得反应Ⅰ的,(、为速率常数,与温度、催化剂有关)。若平衡后升高温度,则_______(填“增大”“不变”或“减小”)。
(2)①下列措施一定能使CO2的平衡转化率提高的是_______(填字母)。
A.增大压强 B.升高温度 C.增大H2与CO2的投料比 D.改用更高效的催化剂
②恒温(200℃)恒压条件下,将1mol CO2和1mol H2充入某密闭容器中,反应达到平衡时,CO2的转化率为a,CH3OH的物质的量为b mol,则此温度下反应Ⅲ的平衡常数Kx =_______[写出含有a、b的计算式;对于反应为物质的量分数。已知CH3OH的沸点为64.7℃]。其他条件不变,H2起始量增加到3 mol,达平衡时,平衡体系中H2的物质的量分数为_______(结果保留两位有效数字)。
(3)反应Ⅲ可能的反应历程如图所示。
注:方框内包含微粒种类及数目、微粒的相对总能量(括号里的数字或字母,单位:eV)。其中,TS表示过渡态、*表示吸附在催化剂上的微粒。
①反应历程中,生成甲醇的决速步骤的反应方程式为_______。
②相对总能量_______eV(计算结果保留2位小数)。(已知:)
18.(2023·山东菏泽·校考一模)一种利用太阳能催化甲烷水蒸气重整制氢反应原理及各步反应以气体分压(单位为)表示的平衡常数与温度T变化关系如图所示。
回答下列问题:
(1)若第I步反应生成1molH2,吸收QkJ热量,第I步的热化学方程式为_______。
(2)甲烷水蒸气重整制氢反应CH4(g)+H2O(g) CO(g)+3H2(g),_______0(填“>”“<”或“=”);1000℃时,该反应的平衡常数Kp_______ (kPa)2。
(3)已知上述制氢过程中存在副反应:CO(g)+ H2O(g) CO2(g)+ H2(g)。压强为100kPa时,将n(H2O):n(CH4)=3的混合气体投入温度为T℃的恒温恒容的密闭容器中,发生甲烷水蒸气重整反应和上述副反应,达平衡时容器内的压强为140kPa,CO2分压为10kPa,则H2O的平衡转化率为_______,此时温度T_______1000(填“>”“<”或“=”)。
(4)在一定条件下,密闭容器中加入一定量的CO、H2O和催化剂发生反应CO(g)+ H2O(g) CO2(g)+ H2(g)。,,其中、为正、逆反应速率,、分别为速率常数,p为气体的分压。已知降低温度时,增大。调整CO和H2O初始投料比,测得CO的平衡转化率如图。A、B、C、D四点中温度由高到低的顺序是_______,在C点所示投料比下,当CO转化率达到40%时,_______。
19.(2023·山东菏泽·校考一模)为实现“碳达峰”、“碳中和”目标,可将CO2催化加氢制甲醇。该反应体系中涉及以下两个主要反应:
反应I: CO2(g)+3H2(g)CH3OH(g)+H2O(g) ΔH1=-49kJ/mol
反应II: CO2(g)+H2(g) CO(g)+H2O(g) ΔH2=+41kJ/mol
(1)反应CO(g)+2H2(g) CH3OH(g)的反应热ΔH3=_______。
(2)在密闭容器中,上述反应混合体系建立平衡后,下列说法正确的是_______。
A.增大压强,CO的浓度一定保持不变
B.降低温度,反应II的逆反应速率增大,正反应速率减小
C.增大CH3OH的浓度,反应II的平衡向正反应方向移动
D.恒温恒容下充入氦气,反应I的平衡向正反应方向移动
(3)不同条件下,相同的时间段内CH3OH的选择性和产率随温度的变化如图。
CH3OH的选择性= 100%
①由图可知,合成甲醇的适宜条件为_______ (填标号)
A.CZT催化剂 B.CZ(Zr-1)T 催化剂 C.230°C D.290 °C
②在230°C以上,升高温度,CO2的平衡转化率增大,但甲醇的产率降低,原因是_______。
(4)恒温恒压密闭容器中,加入2molCO2和4molH2,发生反应I和反应II,反应达平衡时,CO2的转化率为50%,气体体积减小10%,则在达到平衡时, CH3OH的选择性=_______,反应II的平衡常数K=_______。
(5)利用电催化可将CO2同时转化为多种燃料,装置如图:
①铜电极上产生HCOOH的电极反应式为_______。
②若铜电极上只生成5.6gCO,则铜极区溶液质量变化了 _______g。
参考答案:
1.D
【详解】A. 测定中和反应的反应热要在隔热装置中进行,故A错误;
B. 用图2装置测定化学反应速率,气体会从长颈漏斗管口逸出,故B错误;
C. 用图3装置分离乙醚和苯,球形冷凝管易残留馏分,应选直形冷凝管,故C错误;
D. 用图4装置振荡萃取、静置分层后,打开分液漏斗上方的玻璃塞再进行分液,故D正确;
故选D。
2.D
【详解】A.催化剂可同时降低主副反应的活化能,但不能降低反应热、,A错误;
B.由题干反应历程图可知,*OCH2与H原子结合形成*OCH3,B错误;
C.依据图中变化关系,反应过程中包含极性键和非极性键的断裂,没有非极性键的形成,C错误;
D.由题干反应历程图可知,反应的活化能最大,该步反应速率最慢为决速步,D正确;
故答案为:D。
3.C
【详解】A.S2-和Al3+发生双水解生成氢氧化铝和H2S,不能得到固体,A错误;
B.铜制搅拌器会导致热量损失,引起误差,B错误;
C.a为阳极,电镀时,镀层金属作阳极,渡件作阴极,可实现铁上镀铜,C正确;
D.1-溴丁烷和氢氧化钠乙醇溶液反应生成丁烯,但乙醇挥发,两者均可使酸性高锰酸钾溶液褪色,无法检验,D错误;
故选C。
4.C
【详解】A.产物P2比P1的能量低,所以P2更稳定,A项正确;
B.由图得反应物的能量之和比生成物的能量之和高,因此该反应为放热反应,B项正确;
C.由中间产物Z转化到产物P1所需要的活化能低于中间产物Z到P2所需要的活化能, 所以速率 v(P1)>v(P2),C项错误;
D.由图得,中间产物Z到过渡态Ⅳ所需要的活化能最大,则该历程中最大正反应活化能E正=(-18.92kJ/mol)-(-205.11kJ/mol)=186.19kJ/mol,D项正确;
故答案为C。
5.BD
【详解】A.由图可知,使用催化剂时的活化能小于使用催化剂时的活化能,则催化效果:催化剂高于催化剂,故A正确;
B.由图可知,催化时,1分子比1分子能量低,则生成1mol放热为,故,故B错误;
C.过氧化氢分解生成水和氧气,由图可知,使用催化剂时吸附产物MS3能量更高,更容易脱附,故C正确;
D.催化剂改变反应速率,但是不会改变反应的热效应,不管使用哪种催化剂,的分解热效应是相同的,故D错误;
故选BD。
6.CD
【详解】A.测定中和反应的反应热需要测量反应前后温度的变化,但是应该使用量热计,不是在锥形瓶内,不可以达到实验目的,故A不符合题意;
B.反应中还需要控制温度、大理石颗粒度等变量,不可以达到实验目的,故B不符合题意;
C.用pH计测量室温下0.1 mol·L⁻¹氨水的pH,可以通过pH计算出氨水电离出的氢氧根离子浓度,从而测定温下的电离程度,故C符合题意;
D.乙醇含羟基,乙醛含有醛基,乙醛能和新制氢氧化铜悬浊液在加热条件下反应产生砖红色沉淀,能鉴别,故D符合题意;
故选CD。
7.(1) -246kJ•mol-1 减小
(2) 1.35 CH3*+H*=CH4*
(3) c>b>a 温度越高,浓度越大,则速率越大,由于转化率c>b>a,故甲烷的浓度c>b>a,且对应温度c>b>a,综上所述,v(CH4)逆由大到小顺序为c>b>a 0.16 16.7 33.4
(4)DE
【详解】(1)由盖斯定律可知,由反应“②—①”可得目标方程式,,反应③中碳元素转化为碳单质,反应④中碳单质转化为甲烷和二氧化碳,故反应③、④的存在会导致甲烷的产率减小。
(2)该反应历程中最大的能垒为,该步骤反应的化学方程式为。
(3)①反应速率与温度和浓度等有关,温度越高,浓度越大,则速率越大,c点甲烷的浓度大、温度高,故v(CH4)逆最大,其次为b点,最小的为a点的v(CH4)逆;初始总压为3MPa,其中氢气的分压为2MPa,T2温度下H2的转化率为80%,故10min时;根据题意可知T2时为平衡态,设反应后的压强为P总,可得:,恒容条件下,气体的压强比等于气体的物质的量之比,则,解得,
平衡时各组分的物质的量分数分别为、、、,则平衡分压为0.6Mpa、0.4Mpa、0.4Mpa、0.8Mpa,。
②由,故。
(4)A.中Fe为+3价,A错误;
B. 由图可知在制氢过程中、为催化剂,为中间产物,ZnFe2O4不能降低了H2O分解的活化能,B错误;
C. 、为催化剂,理论上不需要补充、,C错误;
D.反应3通入氩气作为保护气是因为氩气的化学性质稳定,D正确;
E. 由图所示贮氢过程可表示为3H2+2Mg2Cu=3MgH2+MgCu2,E正确;
答案选DE。
8.(1)不是
(2) 25a 16
(3) 30℃ A
(4) < 4.8<n<6 >
【详解】(1)反应Ⅲ=反应Ⅰ-反应Ⅱ,ΔH3=ΔH1-ΔH2=[-100.3-(-109.4)]kJ·mol-1=+9.1kJ·mol-1,△H3大于零,熵变小于零,自由能大于零,非自发,答案为:不是;
(2)设平衡时容器中的环戊二烯和环戊烷的物质的量为xmol,则反应中消耗的环戊二烯的物质的量为(a-x)mol,因为环戊烯的选择性为80%,所以环戊烯的物质的量为,根据碳原子守恒可得,解得,所以H2的转化率为;平衡时容器内环戊二烯和环戊烷的物质的量均为,环戊烯的物质的量为,则环戊二烯、环戊烷、环戍烯的物质的量分数分别为、、,则;故答案为:25a;16;
(3)根据图象可知,该体系温度为30℃左右时,环戊烯的选择性和环戊二烯的转化率都很高,因此最佳温度为30℃;
A.催化剂的活性在一定温度范围内最大,高于或低于这个温度范围,催化剂的活性降低,导致选择性降低,A正确;
B.催化剂对化学平衡移动无影响, B错误;
C.使用催化剂,降低反应活化能,催化剂的活性降低,活化能应增大,C错误;
故选A
故答案为:30;A;
(4)①根据图象可知,相同时间段内,环戊二烯表示的反应速率大于双环戊二烯表示的反应速率,因此T1>T2,温度高,反应速率快,达到平衡时所用的时间短,即m<2;在T2温度下,达到平衡,消耗双环戊二烯的物质的量为(3-0.6)mol=2.4mol,此时生成环戊二烯的物质的量为2.4×2mol=4.8mol,因为T1>T2,该反应为吸热反应,升高温度,平衡向正反应方向移动,则n>4.8mol,假设双环戊二烯全部反应,则生成环戊二烯的物质的量为6mol,但该反应为可逆反应,不能进行到底,因此n<6mol,综上所述,得出n的范围为4.8<n<6;故答案为<,4.8<n<6;
②由①的分析可知,T2温度下,达到平衡时,生成环戊二烯的物质的量为4.8mol,容器内气体的总物质的量为0.6mol+4.8mol=5.4mol,相同条件下,压强之比等于气体物质的量的之比,则平衡时,容器内的气体压强为起始时容器内压强的1.8倍,该反应为气体体积增大的反应,由于1.8>1.5,当容器内气体的压强为起始时的1.5倍时,反应正向进行,即v(正)>v(逆);故答案为:>。
9.(1) 0.01
(2)B
(3)
(4) 升高温度 反应III为吸热反应,升高温度,平衡正向移动,副产物增多,丙烯的选择性降低
【详解】(1)已知:
反应I:
反应II:
由盖斯定律可知,I+II得:,反应的焓变等于反应物的键能和减去生成物的键能和,由图表数据可知,;
分析表中数据:要合成得到更多的丙烯,应控制甲醇的最佳分压为0.01MPa,此时丙烯的选择性最高,而副产物乙烯的选择性最低;
(2)温度为500K时,在密闭反应器中加入2mol ,若只发生反应Ⅰ,由于反应为可逆反应不可能进行完全,则体系中的物质的量分数小于;已知:,温度为500K时,,;假设某一时刻,甲醇、甲醚、水的物质的量相等,此时体系中的物质的量分数为,则,反应正向移动,故平衡是体系中的物质的量分数大于;故选B;
(3)在恒容密闭容器中通入甲醇,初始压强为,反应达到平衡时压强为;“两步法”中,反应I为气体分子数不变的反应,反应II为气体分子数增加1的反应,则总压强的变化是由反应II引起的,根据化学方程式II体现的关系可知,平衡混合体系中,丙烯的分液为,体积分数为;若平衡时甲醇的转化率为60%,则反应甲醇0.6、平衡是甲醇0.4;平衡时丙烯;则反应II生成水2、消耗甲醚,反应I消耗甲醇[0.6-]=(0.8-0.5)、生成甲醚(0.8-0.5)、水(0.8-0.5),故平衡时甲醚为(0.8-0.5)-=(1.8-1.5)、水为2+(0.8-0.5)=(1.5-1.2),故反应II(OTP)的平衡常数;
(4)要提高丙烯的选择性,可采取的措施是适当升高温度;当温度高于285℃后,丙烯的选择性降低,其原因是反应III为吸热反应,升高温度,平衡正向移动,副产物增多,丙烯的选择性降低。
10.(1)
(2) > 含量先增大后减少
(3) < 415.7
(4) 催化剂产生作用需要有氧气参加
【详解】(1)已知:① ;② ;③ ;由盖斯定律可知,(②×2-3×③+①)得到 (×2-3×+)=。
(2)由图可知,含量先增大后减少,说明反应刚开始时反应的程度大于的程度,则速率常数>。
(3)①活化能越小,反应速率越快,则反应I与反应II的活化能:<;反应的平衡常数,当反应达到平衡时, =,则,=,则,则;
②根据已知条件列出“三段式”
达平衡时NO转化率为=x=0.9,转化率为y=0.4,平衡时气体总物质的量为3mol,则平衡时体系总压强为=,混合气体的总体积V=,则的平衡常数415.7。
(4)①5min内,温度从420K升高到580K,NO的转化率由2%上升到59%,此时段内NO的平均反应速率;
②无氧条件下,NO生成的转化率较低,原因可能是催化剂产生作用需要有氧气参加。
11.(1)-49.5
(2) 40%(或0.4) 40%(或0.4) 66.7%(或或0.667) 或0.003或能转换成0.003
(3) CO、CH3OH选择性的和 增大(或变大)
【详解】(1)T1℃时,向恒压容器中充入0.2 mol CO2(g)和0.6 mol H2(g),若在该条件下只发生反应Ⅰ:,达平衡时,放出4 kJ能量,则加入1 mol CO2(g)和3 mol H2(g),反应达到平衡时放出热量Q正==20 kJ;若向相同容器中充入0.4 mol CH3OH(g)和0.4 mol H2O(g),吸收11.8 kJ能量,则充入1 mol CH3OH(g)和1 mol H2O(g)反应达到平衡时吸收热量Q逆==29.5 kJ,该反应是可逆反应,反应物不能完全转化为生成物,当按照反应方程式的计量数加入物质时,正反应的转化率与逆反应的转化率的和为1,故反应Ⅰ的△H1=-(29.5kJ/mol+20 kJ/mol)=- 49.5 kJ/mol;
(2)根据三个反应方程式中物质反应转化关系可知:反应产生CO与H2O的量相等,则根据CO含量是5%可知反应Ⅲ产生H2O占5%;根据反应Ⅱ中物质反应转化关系可知反应产生10% CH3OCH3(g),会同时产生H2O占10%,消耗20%的CH3OH(g),此时容器中CH3OH(g)占5%,则反应Ⅰ产生CH3OH(g)为20%+5%=25%,同时产生H2O占25%,故该容器中水的含量为5%+10%+25%=40%(或写为0.4);
CO2气体参加三个化学反应,其中部分转化为CH3OCH3(g),部分转化为CH3OH(g)和CO(g),反应达到平衡时CH3OH(g)、CH3OCH3(g)和CO(g)体积分数分别为5%、10%、5%,根据转化关系可知:理论上反应产生CH3OCH3(g)的CO2的体积分数为5%+2×10%+5%,根据C原子守恒可知:每有2个CO2参加反应,理论上可制取1个 CH3OCH3(g),现在反应达到平衡时产生CH3OH(g)、CH3OCH3(g)和CO(g)体积分数分别为5%、10%、5%,则发生反应消耗CO2依次占5%、20%、5%,
反应Ⅲ.为放热反应,升高温度平衡正向移动,根据图中曲线可知,当A、B两直线相交时,,当温度降低时,增大,则,则A为lgk逆随的变化曲线,B为lgk正随的变化曲线,T2℃时,lgk正-lgk逆=lg=a-1-(a-0.7)=-0.3,K==10-0.3=0.50,对于反应Ⅰ,反应达到平衡时CH3OCH3(g)占10%,H2O占40%,CH3OH(g)和CO(g)体积分数均为5%,则CO2和H2的体积分数之和为1-10%-40%-5%-5%=40%,设CO2占x,则H2占40%-x,根据三段式有:
Kp==0.50,解得x=20%,根据C守恒,理论上CO2转化成CH3OCH3(g)的体积分数为20%+(5%+5%)+10%=25%,实际转化10%,则CH3OCH3(g)产率为;
CO2转化成CH3OCH3(g)的选择性为;
则对于反应反应Ⅰ的Kp==;
(3)①反应Ⅱ为放热反应,升高温度平衡逆向移动,CH3OCH3(g)选择性减小,则曲线A为CH3OCH3(g)选择性;反应Ⅱ的进行使部分CH3OH继续消耗,故CO2的转化率大于CO、CH3OH选择性的和,因此曲线C表示CO、CH3OH选择性的和;
②T1-T5温度之间,升高温度,反应Ⅰ、Ⅱ为放热反应,逆向移动,n(H2O)减小,反应Ⅲ为吸热反应,升高温度平衡正向移动,但n(H2O)、n(CO)增加的量相等,故比值将增大。
12.(1) Ⅱ
(2) 或2.1 后反应Ⅲ逆向进行的程度大
(3)增大浓度可以促使反应②平衡左移;在催化剂表面形成共熔物,减小了催化剂的表面积,减慢了反应①的速率;在催化剂表面形成共熔物,因其显碱性更易吸附有利于,有利于和C在催化剂表面的反应
(4)、、或
【详解】(1)反应I、Ⅱ的熵均增大,且自发均需高温条件,所以反应I、Ⅱ的正反应均为吸热反应,且反应Ⅱ的∆S更大,则∆H更大,故图中a点代表的是反应Ⅱ;反应I:;
反应Ⅱ:;
反应III的∆H3=(∆H1-∆H2)÷2=[+247KJ/mol-(+329KJ/mol)]÷2=+41KJ/mol;
(2)开始时向容器中加入3molCO2和1molCH4,据图可知900℃时容器中n(CO)=n(CO2)=1.85mol;n(H2)=0.95mol;根据C元素守恒,体系中CH4的物质的量:n(CH4)=1mol+3mol-1.85mol-1.85mol=0.3mol,根据H元素守恒,体系中n(H2O)=(1mol×4-0.95mol×2-0.3mol×4)÷2=0.45mol,体系中CH4的物质的量分数为:;反应体系的总物质的量n=1.85mol×2+0.95mol+0.45mol+0.3mol=5.4mol,反应Ⅲ的平衡常数:;反应Ⅲ为吸热反应,900K后升温逆向进行的程度大;
(3)增大浓度可以促使反应②平衡左移;在催化剂表面形成共熔物,减小了催化剂的表面积,减慢了反应①的速率;在催化剂表面形成共熔物,因其显碱性更易吸附有利于,有利于和C在催化剂表面的反应;
(4)结合催化机理如图3所示,每一步的反应分别为:、、或。
13.(1) -165 减小 大于 1.5×105
(2) 逆向移动 增大 不变
【详解】(1)①△H1=(-75 kJ·mol-1)+2×(-242kJ·mol-1) -(-394 kJ·mol-1) = -165 kJ·mol-1;△H2=(-111 kJ·mol-1)+ (-242kJ·mol-1) -(-394 kJ·mol-1) = +41 kJ·mol-1;由盖斯定律可知,I- II得:3H2(g)+CO(g)⇌CH4(g)+H2O(g),△H=-206 kJ·mol-1,其平衡常数,反应为放热反应,温度升高,平衡逆向进行,平衡常数变小;
②由图可知,A点温度更高、压强更大,则平衡时A点的正逆反应速率更快,则速率:vA(正)大于B(逆);
假设氢气、二氧化碳投料分别为3mol、1mol,且C点CH4与CO的分压相同,则:
此时,反应后总的物质的量为(4-2a)mol;已知x(CH4)=0.1、压强为5×105Pa,则,,总的物质的量、水的物质的量为,则p(H2O)= ;
平衡时氢气、二氧化碳、甲烷、水分别为、、、,其物质的量分数分别为0.4、0.1、0.1、0.3,则反应I以物质的量分数表示的平衡常数KxI=;
(2)恒压、750℃时,过程II平衡后通入He,相当于增大容器体积,导致反应i逆向移动,使得二氧化碳增多,进而导致反应iii的化学平衡将逆向移动;反应i为气体分子数减小的反应、反应ii、iii为气体分子数不变的反应,故达到重新平衡时,n(CO2) 仍然增大;反应iii为气体分子数不变的反应,且反应物中只有一氧化碳为气体,其平衡常数只受温度影响,温度不变,平衡常数不变,则新平衡时p(CO)不变。
14.(1)+41.2
(2) n 0.10 20
(3) 主反应放热,副反应吸热,升温使主反应平衡逆向移动程度大于副反应平衡正向移动程度,因而使CO2转化率和甲醇选择性下降 气体流速过大,使得气体在容器中未能充分反应,还未达到化学平衡就被排出,导致CO2的转化率降低
(4)5:4
【详解】(1)已知25℃和101kPa下,H2(g)、CO(g)的燃烧热分别为285.8kJ•mol-1、283.0kJ•mol-1,即反应①H2(g)+O2(g)=H2O(l) =-285.8kJ/mol,反应②CO(g
)+ O2(g)=CO2(g)=-283.0kJ/mol,③H2O(l)=H2O(g) △H=+44kJ•mol-1,则①-②+③得反应IICO2(g)+H2(g)CO(g)+H2O(g),根据盖斯定律可知,△H2=(-285.8kJ/mol)-( -283.0kJ/mol)+( +44kJ•mol-1)=+41.2kJ•mol-1,故答案为:+41.2;
(2)①由(1)反析结合题干信息可知,反应I正反应为放热反应,升高温度平衡逆向移动,则平衡常数减小,而反应Ⅱ正反应为吸热反应,升高温度平衡正向移动,则平衡常数增大,即反应I的lnKp随着的增大,即随着T的降低而增大,反应Ⅱ的lnKp随着的增大,即随着T的降低而减小,结合题干图示可知,反应Ⅱ对应图1中n,A点对应温度下体系达到平衡时CO2的转化率为80%,根据三段式分析:、,图中A点反应Ⅱ的平衡常数lnKp=1,即Kp=1.00,则有=1.0,解得x=0.5mol,故有反应Ⅰ的Kp==0.10kPa-2,故答案为:n;0.10;
②通过调整温度可调控平衡时的值,B点对应温度下,反应I和反应Ⅱ的压力平衡常数相等,即,即得p2(H2)=,平衡时=400,则p(H2)=20kPa,故答案为:20;
(3)CO2催化加氢制甲醇为放热反应,升高温度,平衡逆向移动,甲醇选择性降低,二氧化碳转化率降低,竞争反应CO2(g)+H2(g)CO(g)+H2O(g)为吸热反应,升高温度,平衡正向移动,二氧化碳转化率升高,但升高温度使CO2催化加氢制甲醇平衡逆向移动程度大于竞争反应CO2(g)+H2(g)CO(g)+H2O(g)平衡正向移动程度,因而使CO2转化率和甲醇选择性下降,若气体流速过大,使得气体在容器中未能充分反应,还未达到化学平衡就被排出,从而CO2的转化率降低, 故答案为:主反应放热,副反应吸热,升温使主反应平衡逆向移动程度大于副反应平衡正向移动程度,因而使CO2转化率和甲醇选择性下降;气体流速过大,使得气体在容器中未能充分反应,还未达到化学平衡就被排出,导致CO2的转化率降低;
(4)对于反应Ⅱ,由于两个体系的反应温度相同,压强不同,但压强不影响平衡移动,因此平衡时两个体系中CO2和氢气的物质的量均为amol相同,速率之比等于CO2的分压平方之比,而压强之比等于容器体积之反比,因此体积之比为5:4,故答案为:5:4。
15.(1)C
(2) 不 0.027 逆向 大于
(3) 500K、 65.2%或者0.652
【详解】(1)由题干表中数据可知,4HBr(g)+O2(g)=2Br2(g)+2H2O(g) =(2z+2w-4x-y)kJ/mol,此温度下,在恒容密闭容器中充入4mol HBr(g)和1mol O2(g)发生“氧化”,测得反应物的平衡转化率为60%,若保持其他条件不变,改为绝热状态,随着反应进行容器温度升高,平衡逆向移动,则反应物的平衡转化率小于60%,故平衡时测得放出热量为Q kJ,则,故答案为:C;
(2)根据反应方程式可知,当当容器体积从10 L缩小到3 L时,测得此时容器内仅有四种气态组分,反应前后气体的体积不变,即改变容器体积即改变压强,平衡不移动,m==0.027,;容器体积缩小到 L时,若平衡不移动,则平衡时c(CH3Br)==0.27mol/L,而实际为0.25mol/L,说明平衡逆向移动,T K时,此反应在容积为10L和L时化学平衡常数分别为、,由三段式分析10V0时,,K1==0.14,V0时,由于压强增大,Br2蒸气变为液体,导致平衡逆向移动,此时,K2==0.083,则大于,故答案为:不;0.027;逆向;大于;
(3)由题干反应方程式可知,恒温恒容下,增大压强平衡正向移动,即x()随着压强增大而增大,故图像中曲线b为恒温在500K下随压强增大的曲线,而恒温恒压下,随着温度的升高,平衡逆向移动,即x()随着温度的升高而减小,故题干图像中曲线a为下随着温度升高而改变的曲线,b点对应的条件为500K、,b点时x()=0.30,根据三段式分析可知,,则有:=0.30,解得x=mol,故b点=65.2%,故答案为:;500K、;65.2%或者0.652。
16.(1)+206.1
(2) B a 温度升高,反应Ⅰ向逆反应方向移动,甲烷的物质的量分数降低;压强增大,反应Ⅰ向正反应方向移动,甲烷的物质的量分数增大 0.75V 1
(3) 4 55.2
【详解】(1)反应Ⅰ: ;反应Ⅱ: ;反应Ⅱ-反应Ⅰ可得,所以;故答案为+206.1。
(2)①A.反应Ⅰ+反应Ⅱ可得总反应方程式为,和的系数不同,所以的消耗速率和的消耗速率相等不能说明达到平衡,故A不符合题意;
B.和在恒压密闭容器中反应,且反应为气体分数该变的反应,所以混合气体的密度不再发生变化可以说明达到平衡,故B符合题意;
C.和在恒压密闭容器中反应,容器内气体压强不再发生变化不能说明达到平衡,故C不符合题意
故答案选B。
②反应Ⅰ正反应放热,升高温度,平衡逆向移动,CH4百分含量减小,所以a、c表示CH4物质的量分数随温度变化关系,增大压强,反应Ⅰ正向移动,CH4物质的量分数增大,所以表示1MPa时CH4物质的量分数随温度变化关系的曲线是a;所以b和c分别为0.1MPa时CO和CH4物质的量分数随温度变化关系的曲线。在550℃条件下,t min反应达到平衡,设反应生成了xmolCH4,则可知生成了0.4xmolCO,反应消耗了1-1.4xmolCO2,根据三种气体的关系可得= 0.5,解的x=0.5,所以达到平衡时,整个体系中含有0.3molCO2,0.5molCH4,0.2molCO,0.8molH2,1.2molH2O,所以平衡时容器的体积为=0.75V。因为反应Ⅱ中反应物和生成物的化学计量系数相等,所以反应Ⅱ的Kp==1。
(3)①已知该温度下,;,所以;故答案为4。
②生成HCOOH的电解效率为80%,当电路中转移3 mol 时,由B的电解效率可知,,阴极室发生反应为和2H++2e-=H2↑,消耗的H+会由阳极室的H+通过质子膜从而补充到阴极室,所以阴极室溶液的质量增加为,故答案为55.2。
17.(1) +41.0 减小
(2) AC 0.56
(3) 或 -0.51
【详解】(1)根据盖斯定律,由Ⅲ-Ⅱ可得
;反应Ⅰ属于吸热反应,反应Ⅰ达平衡时,升温,平衡正向移动,K增大,则减小;
(2)①A.Ⅲ为气体分子总数减小的反应,加压能使平衡正向移动,从而提高的平衡转化率,A正确;
B.反应Ⅰ为吸热反应,升高温度平衡正向移动,反应Ⅲ为放热反应,升高温度平衡逆向移动,的平衡转化率不一定升高,B错误;
C.增大与的投料比有利于提高的平衡转化率,C正确;
D.催剂不能改变平衡转化率,D错误;
故选AC;
②200 ℃时是气态,1 mol 和1mol H2充入密闭容器中,平衡时的转化率为a,则消耗,剩余,的物质的量为,根据碳原子守恒,生成CO的物质的量为,消耗,剩余,生成,此时平衡体系中含有和,则反应Ⅲ的;其他条件不变,H2起始量增加到3 mol,达平衡时,则平衡时
的物质的量分别为0.5 mol、1.9 mol、0.5 mol、0.2 mol、0.3 mol,平衡体系中H2的物质的量分数为1.9/3.4=0.56;
(3)①决速步骤指反应历程中反应速率最慢的反应。反应速率快慢由反应的活化能决定,活化能越大,反应速率越慢。仔细观察并估算表中数据,找到活化能(过渡态与起始态能量差)最大的反应步骤为,
;
②反应Ⅲ的,指的是和的总能量与和的总能量之差为49 kJ,而反应历程图中的E表示的是1个分子和1个分子的相对总能量与1个分子和3个分子的相对总能量之差(单位为eV),且将起点的相对总能量设定为0,所以作如下换算即可方便求得相对总能量。
18.(1)
(2) >
(3) >
(4) B> A>C>D
【详解】(1)第I步反应为甲烷和反应生成、、一氧化碳和氢气,若生成1molH2,吸收QkJ热量,第I步的热化学方程式为;
(2)由图可知,第Ⅱ步的反应为,反应I+反应Ⅱ得:,则反应的,则1000℃时,该反应的平衡常数(kPa)2;由图可知,斜率更大受温度影响更大且随温度升高而变大,故也随温度升高而变大,升高温度平衡正向移动,则反应为吸热反应,焓变大于零;
(3)压强为100kPa时,将n(H2O):n(CH4)=3的混合气体投入温度为T℃的恒温恒容的密闭容器中,则水、甲烷初始压强分别为25kPa、75kPa;副反应为气体分子数不变的反应,不会改变压强,重整反应为气体分子数增加2的反应,达平衡时容器内的压强为140kPa,则反应甲烷压强为(140kPa-100kPa)÷2=20 kPa;
则H2O的平衡转化率为;由三段式可知,此时重整反应的,重整反应为吸热反应,K值变大,则温度升高,故温度T大于1000。
(4)已知降低温度时,增大,则说明正反应速率增大,反应正向进行,为放热反应;增加一氧化碳的投料会降低一氧化碳的转化率、降低温度平衡正向移动会提高一氧化碳的转化率,故温度A大于C大于D;投料比相同,B点转化率更低,则温度B大于A;故A、B、C、D四点中温度由高到低的顺序是B> A>C>D;
在C点所示投料比下,若一氧化碳和水的投料浓度均为1mol/L,一氧化碳的平衡转化率为50%:
此时=,,;
当CO转化率达到40%时:
。
19.(1)-90kJ/mol
(2)C
(3) BC 230°C以上,温度升高,反应I的平衡向逆反应方向移动,反应II的平衡向正反应方向移动,但温度对反应II的平衡影响更大
(4) 30%
(5) CO2+2e- +2H+ =HCOOH 3.6
【详解】(1);
(2)A.增大压强,反应II平衡不移动,反应I平衡正向移动导致二氧化碳浓度增大,从而使反应II平衡正向移动,一氧化碳浓度增大,A错误;
B.降低温度,反应II的正、逆反应速率均减小,B错误;
C.增大甲醇浓度,使反应I逆向移动,二氧化碳浓度增大,反应II正向移动,C正确;
D.恒温恒容下通入氦气,对于反应I来说各物质浓均不变,平衡不移动,D错误;
故选C。
(3)由图可知在相同温度下CZ(Zr-I)T催化剂对甲醇的选择性更高,温度为230oC时甲醇的产率最高,故合成甲醇的适宜条件选BC;
在230°C以上,升高温度,反应I为放热反应,平衡逆向移动,甲醇的产率降低;反应II为吸热反应,平衡正向移动,CO2的平衡转化率增大;升高温度对反应II的影响更大,导致CO2的平衡转化率增大,甲醇的产率降低;
(4)设反应I中二氧化碳转化了xmol,反应II中二氧化碳转化了ymol,可列出三段式:
反应达平衡时,CO2的转化率为50%,即x+y=1,气体体积减小10%,即平衡时气体的物质的量比原来少了10%,即,解得x=0.3,y=0.7,在达到平衡时, CH3OH的选择性:; 平衡时反应II中各物质的物质的量为:
,
设容器的体积为VL,平衡常数。
(5)该装置为电解池,Pt为阳极,Cu为阴极。铜电极上为二氧化碳得电子被还原,制备甲酸的电极反应式为:;铜电极上只生成5.6gCO时,电极反应为,即CO2变成CO,溶液增加质量为氧原子质量。生成5.6gCO时,增加氧原子质量为:,该电解池装置用了阳离子交换膜,同时会有氢离子迁移到铜极区,增加的氢离子质量为:,共增重3.6g。
山西高考化学三年(2021-2023)模拟题汇编-09化学反应的热效应: 这是一份山西高考化学三年(2021-2023)模拟题汇编-09化学反应的热效应,共42页。试卷主要包含了单选题,原理综合题等内容,欢迎下载使用。
山西高考化学三年(2021-2023)模拟题汇编-09化学反应的热效应: 这是一份山西高考化学三年(2021-2023)模拟题汇编-09化学反应的热效应,共42页。试卷主要包含了单选题,原理综合题等内容,欢迎下载使用。
广西高考化学三年(2020-2022)模拟题分类汇编-09化学反应的热效应: 这是一份广西高考化学三年(2020-2022)模拟题分类汇编-09化学反应的热效应,共77页。试卷主要包含了单选题,原理综合题等内容,欢迎下载使用。