所属成套资源:中考数学总复习全套难点解析与训练
中考数学总复习第1讲 全等三角形的性质与判定难点解析与训练
展开
这是一份中考数学总复习第1讲 全等三角形的性质与判定难点解析与训练,共10页。试卷主要包含了全等三角形性质,全等三角形判定方法有等内容,欢迎下载使用。
第1讲 全等三角形的性质与判定考点·方法·破译1.能够完全重合的两个三角形叫全等三角形.全等三角形的形状和大小完全相同;2.全等三角形性质:①全等三角形对应边相等,对应角相等;②全等三角形对应高、角平分线、中线相等;③全等三角形对应周长相等,面积相等;3.全等三角形判定方法有:SAS,ASA,AAS,SSS,对于两个直角三角形全等的判定方法,除上述方法外,还有HL法;4.证明两个三角形全等的关键,就是证明两个三角形满足判定方法中的三个条件,具体分析步骤是先找出两个三角形中相等的边或角,再根据选定的判定方法,确定还需要证明哪些相等的边或角,再设法对它们进行证明;5..证明两个三角形全等,根据条件,有时能直接进行证明,有时要证的两个三角形并不全等,这时需要添加辅助线构造全等三角形,构造全等三角形常用的方法有:平移、翻折、旋转、等倍延长线中线、截取等等.经典·考题·赏析【例1】如图,AB∥EF∥DC,∠ABC=90°,AB=CD,那么图中有全等三角形( )A.5对 B.4对 C.3对 D.2对【解法指导】从题设题设条件出发,首先找到比较明显的一对全等三角形,并由此推出结论作为下面有用的条件,从而推出第二对,第三对全等三角形.这种逐步推进的方法常用到.解:⑴∵AB∥EF∥DC,∠ABC=90. ∴∠DCB=90. 在△ABC和△DCB中 ∴△ABC≌∴△DCB(SAS ) ∴∠A=∠D⑵在△ABE和△DCE中 ∴△ABE≌∴△DCE ∴BE=CE⑶在Rt△EFB和Rt△EFC中 ∴Rt△EFB≌Rt△EFC(HL)故选C.【变式题组】01.(天津)下列判断中错误的是( )A.有两角和一边对应相等的两个三角形全等B.有两边和一角对应相等的两个三角形全等C.有两边和其中一边上的中线对应相等的两个三角形全等 D.有一边对应相等的两个等边三角形全等02.(丽水)已知命题:如图,点A、D、B、E在同一条直线上,且AD=BE,∠A=∠FDE,则△ABC≌△DEF.判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明. 03.(上海)已知线段AC与BD相交于点O, 连接AB、DC,E为OB的中点,F为OC的中点,连接EF(如图所示).⑴添加条件∠A=∠D,∠OEF=∠OFE,求证:AB=DC;⑵分别将“∠A=∠D”记为①,“∠OEF=∠OFE”记为②,“AB=DC”记为③,添加①、③,以②为结论构成命题1;添加条件②、③,以①为结论构成命题2.命题1是______命题,命题2是_______命题(选择“真”或“假”填入空格). 【例2】已知AB=DC,AE=DF,CF=FB. 求证:AF=DE.【解法指导】想证AF=DE,首先要找出AF和DE所在的三角形.AF在△AFB和△AEF中,而DE在△CDE和△DEF中,因而只需证明△ABF≌△DCE或△AEF≌△DFE即可.然后再根据已知条件找出证明它们全等的条件.证明:∵FB=CE ∴FB+EF=CE+EF,即BE=CF在△ABE和△DCF中, ∴△ABE≌△DCF(SSS) ∴∠B=∠C在△ABF和△DCE中, ∴△ABF≌△DCE ∴AF=DE【变式题组】01.如图,AD、BE是锐角△ABC的高,相交于点O,若BO=AC,BC=7,CD=2,则AO的长为( )A.2 B.3 C.4 D.502.如图,在△ABC中,AB=AC,∠BAC=90°,AE是过A点的一条直线,AE⊥CE于E,BD⊥AE于D,DE=4cm,CE=2cm,则BD=__________.\03.(北京)已知:如图,在△ABC中,∠ ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过点E作AC的垂线,交CD的延长线于点F. 求证:AB=FC.【例3】如图①,△ABC≌△DEF,将△ABC和△DEF的顶点B和顶点E重合,把△DEF绕点B顺时针方向旋转,这时AC与DF相交于点O.⑴当△DEF旋转至如图②位置,点B(E)、C、D在同一直线上时,∠AFD与∠DCA的数量关系是________________;⑵当△DEF继续旋转至如图③位置时,⑴中的结论成立吗?请说明理由_____________.【解法指导】⑴∠AFD=∠DCA⑵∠AFD=∠DCA理由如下:由△ABC≌△DEF,∴AB=DE,BC=EF, ∠ABC=∠DEF, ∠BAC=∠EDF ∴∠ABC-∠FBC=∠DEF-∠CBF, ∴∠ABF=∠DEC在△ABF和△DEC中, ∴△ABF≌△DEC ∠BAF=∠DEC ∴∠BAC-∠BAF=∠EDF-∠EDC, ∴∠FAC=∠CDF ∵∠AOD=∠FAC+∠AFD=∠CDF+∠DCA∴∠AFD=∠DCA【变式题组】01.(绍兴)如图,D、E分别为△ABC的AC、BC边的中点,将此三角形沿DE折叠,使点C落在AB边上的点P处.若∠CDE=48°,则∠APD等于( )A.42° B.48° C.52° D.58°02.如图,Rt△ABC沿直角边BC所在的直线向右平移得到△DEF,下列结论中错误的是( )A.△ABC≌△DEF B.∠DEF=90° C. AC=DF D.EC=CF03.一张长方形纸片沿对角线剪开,得到两种三角形纸片,再将这两张三角形纸片摆成如下图形式,使点B、F、C、D在同一条直线上.⑴求证:AB⊥ED;⑵若PB=BC,找出图中与此条件有关的一对全等三角形,并证明.【例4】(第21届江苏竞赛试题)已知,如图,BD、CE分别是△ABC的边A C和AB边上的高,点P在BD的延长线,BP=AC,点Q在CE上,CQ=AB. 求证:⑴ AP=AQ;⑵AP⊥AQ【解法指导】证明线段或角相等,也就是证线段或角所在的两三角形全等.经观察,证AP=AQ,也就是证△APD和△AQE,或△APB和△QAC全等,由已知条件BP=AC,CQ=AB,应该证△APB≌△QAC,已具备两组边对应相等,于是再证夹角∠1=∠2即可. 证AP⊥AQ,即证∠PAQ=90°,∠PAD+∠QAC=90°就可以. 证明:⑴∵BD、CE分别是△ABC的两边上的高,∴∠BDA=∠CEA=90°, ∴∠1+∠BAD=90°,∠2+∠BAD=90°,∴∠1=∠2. 在△APB和△QAC中, ∴△APB≌△QAC,∴AP=AQ⑵∵△APB≌△QAC,∴∠P=∠CAQ, ∴∠P+∠PAD=90° ∵∠CAQ+∠PAD=90°,∴AP⊥AQ【变式题组】01.如图,已知AB=AE,∠B=∠E,BA=ED,点F是CD的中点,求证:AF⊥CD. 02.(湖州市竞赛试题)如图,在一个房间内有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA为am,此时梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面的墙上,此时梯子顶端距地面的垂直距离NB为bm,梯子倾斜角为45°,这间房子的宽度是( )A. B. C.bm D.am03.如图,已知五边形ABCDE中,∠ ABC=∠AED=90°,AB=CD=AE=BC+DE=2,则五边形ABCDE的面积为__________演练巩固·反馈提高01.(海南)已知图中的两个三角形全等,则∠α度数是( )A.72° B.60° C.58° D.50°02.如图,△ACB≌△A/C/B/,∠ BCB/=30°,则∠ACA/的度数是( )A.20° B.30° C.35° D.40°03.(牡丹江)尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于长为半径画弧,两弧交于点P,作射线OP,由作法得△OCP≌△ODP的根据是( )A.SAS B.ASA C.AAS D.SSS04.(江西)如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )A. CB=CD B.∠BAC=∠DAC C. ∠BCA=∠DCA D.∠B=∠D=90°05.有两块不同大小的等腰直角三角板△ABC和△BDE,将它们的一个锐角顶点放在一起,将它们的一个锐角顶点放在一起,如图,当A、B、D不在一条直线上时,下面的结论不正确的是( )A. △ABE≌△CBD B. ∠ABE=∠CBDC. ∠ABC=∠EBD=45° D. AC∥BE06.如图,△ABC和共顶点A,AB=AE,∠1=∠2,∠B=∠E. BC交AD于M,DE交AC于N,小华说:“一定有△ABC≌△AED.”小明说:“△ABM≌△AEN.”那么( )A. 小华、小明都对 B. 小华、小明都不对C. 小华对、小明不对 D.小华不对、小明对07.如图,已知AC=EC, BC=CD, AB=ED,如果∠BCA=119°,∠ACD=98°,那么∠ECA的度数是___________.08.如图,△ABC≌△ADE,BC延长线交DE于F,∠B=25°,∠ACB=105°,∠DAC=10°,则∠DFB的度数为_______.09.如图,在Rt△ABC中,∠C=90°, DE⊥AB于D, BC=BD. AC=3,那么AE+DE=______10.如图,BA⊥AC, CD∥AB. BC=DE,且BC⊥DE,若AB=2, CD=6,则AE=_____.11.如图, AB=CD, AB∥CD. BC=12cm,同时有P、Q两只蚂蚁从点C出发,沿CB方向爬行,P的速度是0.1cm/s, Q的速度是0.2cm/s. 求爬行时间t为多少时,△APB≌△QDC. 12.如图, △ABC中,∠BCA=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.⑴求证:AE=CD;⑵若AC=12cm, 求BD的长. 13.(吉林)如图,AB=AC,AD⊥BC于点D,AD等于AE,AB平分∠DAE交DE于点F, 请你写出图中三对全等三角形,并选取其中一对加以证明. 14.如图,将等腰直角三角板ABC的直角顶点C放在直线l上,从另两个顶点A、B分别作l的垂线,垂足分别为D、E.⑴找出图中的全等三角形,并加以证明;⑵若DE=a,求梯形DABE的面积.(温馨提示:补形法) 15.如图,AC⊥BC, AD⊥BD, AD=BC,CE⊥AB,DF⊥AB,垂足分别是E、F.求证:CE=DF. 16.我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等,那么在什么情况下,它们会全等?⑴阅读与证明:对于这两个三角形均为直角三角形,显然它们全等;对于这两个三角形均为钝角三角形,可证明它们全等(证明略);对于这两个三角形均为锐角三角形,它们也全等,可证明如下;已知△ABC、△A1B1C1均为锐角三角形,AB=A1B1,BC=B1C1,∠C=∠C1.求证:△ABC≌△A1B1C1.(请你将下列证明过程补充完整)⑵归纳与叙述:由⑴可得一个正确结论,请你写出这个结论. 培优升级·奥赛检测01.如图,在△ABC中,AB=AC,E、F分别是AB、AC上的点,且AE=AF,BF、CE相交于点O,连接AO并延长交BC于点D,则图中全等三角形有( )A.4对 B.5对 C.6对 D.7对02.如图,在△ABC中,AB=AC,OC=OD,下列结论中:①∠A=∠B ②DE=CE,③连接DE, 则OE平分∠AOB,正确的是( )A.①② B.②③ C.①③ D.①②③03.如图,A在DE上,F在AB上,且AC=CE , ∠1=∠2=∠3, 则DE的长等于()A.DC B. BC C. AB D.AE+AC04.下面有四个命题,其中真命题是( )A.两个三角形有两边及一角对应相等,这两个三角形全等B.两边和第三边上的高对应相等的两个三角形全等C. 有一角和一边对应相等的两个直角三角形全等D. 两边和第三边上的中线对应相等的两个三角形全等05.在△ABC中,高AD和BE所在直线相交于H点,且BH=AC,则∠ABC=_______.06.如图,EB交AC于点M, 交FC于点D, AB交FC于点N,∠E=∠F=90°,∠B=∠C, AE=AF. 给出下列结论:①∠1=∠2;②BE=CF; ③△ACN≌△ABM; ④CD=DB,其中正确的结论有___________.(填序号)07.如图,AD为在△ABC的高,E为AC上一点,BE交AD于点F,且有BF=AC,FD=CD.⑴求证:BE⊥AC;⑵若把条件“BF=AC”和结论“BE⊥AC”互换,这个命题成立吗?证明你的判定. 08.如图,D为在△ABC的边BC上一点,且CD=AB,∠BDA=∠BAD,AE是△ABD的中线.求证:AC=2AE. 09.如图,在凸四边形ABCD中,E为△ACD内一点,满足AC=AD,AB=AE, ∠BAE+∠BCE=90°, ∠BAC=∠EAD.求证:∠CED=90°. 10.(沈阳)将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.⑴求证:AF+EF=DE;⑵若将图①中△DBE绕点B顺时针方向旋转角α,且0°<α<60°,其他条件不变,请在图②中画出变换后的图形,并直接写出(1)中结论是否仍然成立;⑶若将图①中△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③你认为(1)中结论还成立吗?若成立,写出证明过程;若不成立,请写出此时AF、EF与DE之间的关系,并说明理由。 11.(嵊州市高中提前招生考试)⑴阅读理解:课外兴趣小组活动时,老师提出了如下问题:在△ABC中,AB=5,AC=13, 求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使得DE=AD,再连接BE,把AB、AC、2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.感悟:解题时,条件中若出现“中点”“中线”等条件,可以考虑中线加倍,构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形中.⑵问题解决:受到⑴的启发,请你证明下面命题:如图,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.求证:BE+CF>EF; ⑶问题拓展:如图,在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D为顶点作一个60°角,角的两边分别交AB、AC于E、F两点,连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明. 12.(北京)如图,已知△ABC.⑴请你在BC边上分别取两点D、E(BC的中点除外),连接AD、AE,写出使此图中只存在两对面积相等的三角形的相应条件,并表示出面积相等的三角形;⑵请你根据使⑴成立的相应条件,证明:AB+AC>AD+AE. 13.如图,AB=AD,AC=AE,∠BAD=∠CAE=180°. AH⊥AH于H,HA的延长线交DE于G. 求证:GD=GE. 14.已知,四边形ABCD中,AB⊥AD,BC⊥CD,BA=BC,∠ABC=120°,∠MBN=60°, ∠MBN绕B点旋转,它的两边分别交AD、DC(或它们的延长线)于E、F.当∠MBN绕B点旋转到AE=CF时,如图1,易证:AE+CF=EF;(不需证明)当∠MBN绕B点旋转到AE≠CF时,如图2和图3中这两种情况下,上述结论是否成立? 若成立,请给予证明;若不成立,线段AE、CF、EF又有怎样的数量关系?请写出你的猜想,不需证明.
相关试卷
这是一份中考数学总复习全等中的动点难点解析与训练,共7页。试卷主要包含了如图,△ABC中,等内容,欢迎下载使用。
这是一份中考数学总复习全等的动点动点问题难点解析与训练,共5页。试卷主要包含了友情提醒等内容,欢迎下载使用。
这是一份中考数学总复习第19讲 勾股定理难点解析与训练,共12页。试卷主要包含了会用勾股定理解决简单问题.,一个三角形三边长度之比为3等内容,欢迎下载使用。