年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    江苏省盐城市响水中学2022-2023学年高二数学下学期学情分析考试(一)试题(Word版附解析)

    江苏省盐城市响水中学2022-2023学年高二数学下学期学情分析考试(一)试题(Word版附解析)第1页
    江苏省盐城市响水中学2022-2023学年高二数学下学期学情分析考试(一)试题(Word版附解析)第2页
    江苏省盐城市响水中学2022-2023学年高二数学下学期学情分析考试(一)试题(Word版附解析)第3页
    还剩18页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省盐城市响水中学2022-2023学年高二数学下学期学情分析考试(一)试题(Word版附解析)

    展开

    这是一份江苏省盐城市响水中学2022-2023学年高二数学下学期学情分析考试(一)试题(Word版附解析),共21页。试卷主要包含了试卷分第I卷和第II卷,共4页,下列说法中,正确的有等内容,欢迎下载使用。
    江苏省响水中学2023年春学期高二年级学情分析考试(一)数学试题考生注意:1.试卷分第I卷和第II卷,共4页.2.满分150分,考试试卷120分钟.I卷选择题一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. ,则    A. 30 B. 20 C. 12 D. 6【答案】A【解析】【分析】先由组合的运算公式计算出的值,再代入中,由排列公式即可计算出结果.【详解】故选:A.2. 如图,在四面体中,的重心,上的一点,且,若,则为(    A.  B. C.  D. 【答案】D解析】【分析】根据空间向量线性运算进行计算,用表示出【详解】因为中点,所以的重心,则所以因为所以,则故选:D【点睛】本题考查空间的向量的线性运算,掌握向量线性运算的运算法则是解题关键.3. 已知,则向量在向量上的投影向量是(    A.  B.  C.  D. 【答案】C【解析】【分析】先求出向量在向量上的投影,再求解向量在向量上的投影向量即可.【详解】因为02则向量在向量上的投影为所以向量在向量上的投影向量是故选:4. 上是减函数,则实数的范围是(    A.  B.  C.  D. 【答案】A【解析】【分析】由函数的单调性,将问题转化为导函数小于等于零恒成立的问题,从而进行处理.【详解】因为故可得因为在区间是减函数,在区间上恒成立.因为,故上式可整理化简为在区间上恒成立,因为在区间上的最小值为故只需-1.故选:A.【点睛】本题考查根据函数的单调性,利用导数求解参数范围的问题,属基础题.5. 为弘扬我国古代的六艺文化,某校计划在社会实践中开设六门体验课程,每天开设一门,连续开设6天,则(    A. 从六门课程中选两门的不同选法共有30B. 课程不排在第三天的不同排法共有720C. 课程排在不相邻两天的不同排法共有288D. 课程排在不都相邻的三天的不同排法共有576【答案】D【解析】【分析】根据给定条件利用排列、组合知识,逐项分析计算判断作答.【详解】对于A,从六门课程中选两门的不同选法有()A选项不正确;对于B,除第三天外的5天中任取1天排,再排其他五门体验课程共有()B选项不正确;对于C”“排在不相邻两天,先排其余四门课程,再用插空法排入”“则不同排法共有()C选项不正确;对于D,六门课程的全排列有()排在都相邻的三天的不同排法有(),则排在不都相邻的三天的不同排法共有()D选项正确.故选:D6. 若函数有两个不同的极值点,则实数的取值范围为(    A.  B.  C.  D. 【答案】A【解析】【分析】根据导函数有2个不同的零点,且两个零点均大于零可求解.【详解】函数的定义域为因为函数有两个不同的极值点,所以有两个不同正根,有两个不同正根,所以解得故选:A.7. 如图,在正三棱锥D-ABC中,O为底面ABC的中心,点P在线段DO上,且,若平面PBC,则实数    A.  B.  C.  D. 【答案】D【解析】【分析】由正棱锥的结构特征构建空间直角坐标系,根据已知条件确定相关点坐标并求出面PBC的法向量,结合线面平行及向量共线定理求参数即可.【详解】由题设,为边长为的等边三角形,且等边的高为在正棱锥中,以为原点,平行x轴,垂直y轴,z轴,如上图示,,且所以为面PBC的法向量,则,令,则平面PBC,则k为实数,,故.故选:D8. ,则(    A.  B.  C.  D. 【答案】C【解析】【分析】结合已知要比较函数值的结构特点,可考虑构造函数,然后结合导数与单调性关系分析出,函数取得最大值,可得最大,然后结合函数单调性即可比较大小.【详解】,,,,函数单调递减,,,函数单调递增,故当,函数取得最大值,因为,,,,,函数单调递减,可得,
    .
    故选:C二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 已知空间中四点A(110)B(012)C(032)D(134).下列说法中,正确的有(    A.  B. C. ABC三点共线 D. ABCD四点共面【答案】ABD【解析】【分析】首先求出向量的坐标.根据可判断选项A;根据可判断选项B;根据可判断选项C;设,求出的值,从而可判断选项D.【详解】易知因为,所以 ,故选项 A正确;因为,且四点不共线,所以,故选项B正确;,所以 ABC三点不共线 ,故选项C错误;易知当时,ABCD共面,,所以  解得,所以ABCD共面,故选项D正确.故选:ABD.10. 下列等式正确的是(    A.  B. C.  D. 【答案】BCD【解析】【分析】根据排列组合数的计算公式依次对选项整理变形,分析可得答案.【详解】根据组合数公式得,则A错误;根据排列数公式得,则B正确;根据排列数公式得,则C正确;根据组合数公式得,即,则D确.故选:BCD11. 在棱长为2的正方体中,点MN分别是棱BC中点,下列结论正确的是(    A. B. 直线MN与平面平行C. N到面的距离为D. 平面AMN截正方体所得截面的面积为【答案】AC【解析】【分析】在正方体中建立空间直角坐标系,利用向量的坐标运算进行判断;A,计算即可;B,求出平面的法向量为,计算即可;C,求平面的的法向量为,计算点N到面的距离即可;D,作出面AMN截正方体所得截面,求其面积即可.【详解】如图,以D为坐标原点,建立空间直角坐标, 对于A, ,,故,即,故A正确;对于B, ,设平面的法向量为, ,则可取,故直线MN与平面不平行,故B错误;对于C,设平面的的法向量为,,可取,故点N到面的距离为 ,故C正确;对于D,平面AMN截正方体所得截面为如图等腰梯形 ,,高为 故其面积 ,故D错误,故选:AC.12. 已知函数,则下列说法正确的是(    ).A. 时,过原点作曲线的切线l,则l的方程为B. 时,上单调递增C. 上单调递增,则D. 时,上有极小值点【答案】ABD【解析】【分析】设切点坐标并求导及导数的几何意义可求得切线方程,运用导数研究函数的单调性、极值点.【详解】时,,设切点为所以l过原点,则,解得,所以l的方程为,故A正确;时,时,,所以所以上单调递增,故B正确;,若上单调递增,上恒成立,即上恒成立,,则,得,当时,单调递减,时,单调递增,所以,所以,故C错误;时,,则时,,所以所以上单调递增,所以由零点存在定理可知,存在唯一的,使得时,单调递减,时,单调递增,所以上有极小值点,故D正确.故选:ABDII卷非选择题三、填空题:本题共4小题,每小题5分,共20分.13. 已知,若共线,则_________.【答案】##【解析】【分析】由向量共线的坐标表示得出的值.【详解】因为共线,所以,所以,则.故答案为:14. 5个相同的小球分给3个小朋友,使每个小朋友都能分到小球的分法有__________种.【答案】6【解析】【分析】元素相同问题用隔板法.【详解】利用隔板法:由题可知使每个小朋友都能分到小球的分法有.故答案为:6.15. 平行六面体中,以顶点为端点的三条棱长都为1,且两两夹角为,求的值是__________【答案】1【解析】【分析】选定基底,根据空间向量的加减运算表示出,再根据空间向量的数量积的运算,即可求得答案.【详解】由题意得 ,故答案1.16. 已知,若,都有,则的取值范围为___________.【答案】【解析】【分析】先利用导数求出函数的最大值,将问题转化为恒成立,构造函数,利用二次求导确定该函数的单调性和最值问题.【详解】因为所以时,,当时,上单调递增,在上单调递减,所以恒成立,恒成立,恒成立,所以单调递增,故存在,使得,解得所以所以,即.故答案为:.【点睛】方法点睛:在处理不等式恒成立问题时,往往转化为求函数的最值问题,如:1)对于函数,若,都有2)对于函数,若,都有.四、解答题:本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤.17 解方程:12.【答案】1    2【解析】【分析】(1)根据排列数公式即可求解;(2)根据组合数和组合数的性质即可求解.【小问1详解】,化简,得解得不合题意,舍去【小问2详解】依题意,有,解.经检验,都符合题意.18. 已知向量12时,若向量垂直,求实数的值;3若向量与向量共面向量,求的值.【答案】1    2    3【解析】【分析】1)根据空间向量的模长公式求解即可.2)根据空间向量的加法和数乘运算,可得坐标表示,根据空间向量垂直的坐标计算公式,求解即可.3)根据向量共面定理,建立向量与向量之间的表示,可得方程组,求解即可.【小问1详解】【小问2详解】因为所以,解得因为,且向量垂直,所以所以实数的值分别为【小问3详解】解:设解得,所以向量与向量共面.19. 如图,在长方体中,,点的中点.1所成角的余弦值;2与平面所成角的正弦值.【答案】1    2【解析】【分析】1)根据长方体以为原点,轴建立空间直角坐标系,求解,按照异面直线夹角余弦公式求解所成角的余弦值即可;2)由(1)求平面的法向量与直线的方向向量,再利用空间向量坐标运算解求得与平面所成角的正弦值.【小问1详解】在长方体中,,如图,以为原点,轴建立空间直角坐标系,所以,则所成角的余弦值为【小问2详解】设平面的法向量为,又所以,令,则所以,故与平面所成角的正弦值为.20. 已知函数1时,求曲线在点处的切线方程;2若函数上的最小值是,求a的值.【答案】1    2【解析】【分析】(1)利用导数与切线斜率的关系求解即可;(2)利用导数讨论函数在区间上的单调性即可求解.【小问1详解】时,所以切点为,则所以切线方程为,即.【小问2详解】,则上恒成立,所以上单调递增,所以,不满足题意;,令,解得,令,解得所以函数单调递减,单调递增,所以,解得,满足题意; 上恒成立,所以上单调递减,所以,解得,不满足题意,综上,.21. 如图,在四棱锥中,底面ABCD是边长为2的菱形,PAD为等边三角形,平面平面ABCD1求点A到平面PBC的距离;2E为线段PC上一点,若直线AE与平面ABCD所成的角的正弦值为,求平面ADE与平面ABCD夹角的余弦值.【答案】1    2【解析】【分析】1)取AD中点O,连接OBOP.通过证明,可得.后由等体积法可求得点A到平面PBC的距离;2)由(1),如图建立以O为原点的空间直角坐标系,由直线AE与平面ABCD所成的角的正弦值为,可得.求得平面ADE的法向量后,利用空间向量可得平面ADE与平面ABCD夹角的余弦值.【小问1详解】AD中点O,连接OBOP.为等边三角形,OA=1.平面平面ABCD,平面平面ABCD=AD平面PAD平面ABC.平面ABCD..平面POB平面POB平面POB.平面POB.设点A到平面PBC的距离为h【小问2详解】由(1),分别以OAOBOPx轴,y轴,z轴的正方向建立如图所示的空间直角坐标系..,则.,则.平面ABC,则取平面ABCD的法向量.AE与平面ABCD所成的角为,则,解得..设平面ADE的法向量,则.,则取平面ADE的法向量,又平面ABCD的法向量.故平面ADE与平面ABCD夹角的余弦值为.22. 已知函数1时,证明:2,求的单调区间.3,求k取值范围.【答案】1证明见解析    2递增区间为,递减区间为    3【解析】【分析】1)当时,,求导分析函数的单调性与最小值判断证明即可;2)将代入函数中求导,利用函数导数求出函数的单调区间;3)将函数变形得,令利用函数导数的性质求得范围,然后换元法令等价于,根据条件分参数变形,构造新函数利用函数导数的性质即可.【小问1详解】证明:当时,,则时,单调递减,当时,单调递增,,即【小问2详解】因为,所以由(1)知,当时,,当时,的单调递增区间为,单调递减区间为【小问3详解】,则时,单调递减,时,单调递增,,则等价于因为,所以等价于,则时,单调递减,当时,单调递增,k的取值范围为【点睛】思路点睛:导数题常作为压轴题出现,常见的考法:利用导数研究含参函数的单调性(或求单调区间),求极值或最值求切线方程通过切线方程求原函数的解析式不等式恒(能)成立问题,求参数的取值范围证明不等式已知函数的零点个数求参数的取值范围解决问题思路:对函数求导利用函数的单调性进行求解;构造新函数对新函数,然后利用函数导数性质解决.

    相关试卷

    江苏省响水中学2022-2023学年高一数学下学期3月学情分析试题(Word版附解析):

    这是一份江苏省响水中学2022-2023学年高一数学下学期3月学情分析试题(Word版附解析),共19页。试卷主要包含了本试卷分第Ⅰ卷和第Ⅱ卷,共4页, 已知,向量与的夹角为,则, 已知,,则, 已知函数,则的值域是, 下列式子等于的是等内容,欢迎下载使用。

    2021-2022学年江苏省盐城市响水中学高一下学期第三次学情分析考试数学试题(含答案解析):

    这是一份2021-2022学年江苏省盐城市响水中学高一下学期第三次学情分析考试数学试题(含答案解析),共20页。试卷主要包含了 下列判断错误的是等内容,欢迎下载使用。

    2021-2022学年江苏省盐城市响水中学高二下学期第一次学情分析考试数学试题(解析版):

    这是一份2021-2022学年江苏省盐城市响水中学高二下学期第一次学情分析考试数学试题(解析版),共18页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map