所属成套资源:江苏省镇江市5年(2018-2022)中考数学真题分类汇编-
江苏省镇江市5年(2018-2022)中考数学真题分类汇编-08高频考点试题分类
展开
这是一份江苏省镇江市5年(2018-2022)中考数学真题分类汇编-08高频考点试题分类,共52页。
江苏省镇江市5年(2018-2022)中考数学真题分类汇编-08高频考点试题分类
【高频考点】
一、圆周角定理(1-8,共8小题)
二、列表法与树状图法(9-15),共7小题
三、中位数(16-21,共6小题)
四、实数的运算(22-26,共5小题)
五、解分式方程(27-31,共5小题)
六、二次函数综合题(32-36,共5小题)
七、幂的乘法与积的乘方(37-40,共4小题)
八、全等三角形的判断与性质(41-44,共4小题)
【真题练习】
1.(2022•镇江)如图,在等腰△ABC中,∠BAC=120°,BC=6,⊙O同时与边BA的延长线、射线AC相切,⊙O的半径为3.将△ABC绕点A按顺时针方向旋转α(0°<α≤360°),B、C的对应点分别为B′、C′,在旋转的过程中边B′C′所在直线与⊙O相切的次数为( )
A.1 B.2 C.3 D.4
2.(2021•镇江)如图,∠BAC=36°,点O在边AB上,⊙O与边AC相切于点D,交边AB于点E,F,连接FD,则∠AFD等于( )
A.27° B.29° C.35° D.37°
3.(2021•镇江)如图1,正方形ABCD的边长为4,点P在边BC上,⨀O经过A,B,P三点.
(1)若BP=3,判断边CD所在直线与⊙O的位置关系,并说明理由;
(2)如图2,E是CD的中点,⊙O交射线AE于点Q,当AP平分∠EAB时,求tan∠EAP的值.
4.(2020•镇江)如图,AB是半圆的直径,C、D是半圆上的两点,∠ADC=106°,则∠CAB等于( )
A.10° B.14° C.16° D.26°
5.(2020•镇江)如图,▱ABCD中,∠ABC的平分线BO交边AD于点O,OD=4,以点O为圆心,OD长为半径作⊙O,分别交边DA、DC于点M、N.点E在边BC上,OE交⊙O于点G,G为的中点.
(1)求证:四边形ABEO为菱形;
(2)已知cos∠ABC=,连接AE,当AE与⊙O相切时,求AB的长.
6.(2019•镇江)如图,四边形ABCD是半圆的内接四边形,AB是直径,=.若∠C=110°,则∠ABC的度数等于( )
A.55° B.60° C.65° D.70°
7.(2019•镇江)如图,在△ABC中,AB=AC,过AC延长线上的点O作OD⊥AO,交BC的延长线于点D,以O为圆心,OD长为半径的圆过点B.
(1)求证:直线AB与⊙O相切;
(2)若AB=5,⊙O的半径为12,则tan∠BDO= .
8.(2018•镇江)如图,AD为△ABC的外接圆⊙O的直径,若∠BAD=50°,则∠ACB= °.
9.(2022•镇江)一只不透明的袋子中装有2个白球、1个红球,这些球除颜色外都相同.
(1)搅匀后从中任意摸出一个球,摸到红球的概率等于 ;
(2)搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出一个球.用列表或画树状图的方法,求2次都摸到红球的概率.
10.(2021•镇江)一只不透明的袋子中装有1个黄球,现放若干个红球,它们与黄球除颜色外都相同,搅匀后从中任意摸出两个球,使得P(摸出一红一黄)=P(摸出两红),则放入的红球个数为 .
11.(2021•镇江)甲、乙、丙三人各自随机选择到A,B两个献血站进行爱心献血.求这三人在同一个献血站献血的概率.
12.(2020•镇江)智慧的中国古代先民发明了抽象的符号来表达丰富的含义.例如,符号“☰”有刚毅的含义,符号“☱”有愉快的含义.符号中的“”表示“阴”,“”表示“阳”,类似这样自上而下排成的三行符号还有其他的含义.所有这些三行符号中,每一行只有一个阴或一个阳,且出现阴、阳的可能性相同.
(1)所有这些三行符号共有 种;
(2)若随机画一个这样的三行符号,求“画出含有一个阴和两个阳的三行符号”的概率.
13.(2019•镇江)如图,有两个转盘A、B,在每个转盘各自的两个扇形区域中分别标有数字1,2,分别转动转盘A、B,当转盘停止转动时,若事件“指针都落在标有数字1的扇形区域内”的概率是,则转盘B中标有数字1的扇形的圆心角的度数是 °.
14.(2019•镇江)小丽和小明将在下周的星期一到星期三这三天中各自任选一天担任值日工作,请用画树状图或列表格的方法,求小丽和小明在同一天值日的概率.
15.(2018•镇江)如图,数轴上的点A,B,C,D表示的数分别为﹣3,﹣1,1,2,从A,B,C,D四点中任意取两点,求所取两点之间的距离为2的概率.
16.(2022•镇江)从2021、2022、2023、2024、2025这五个数中任意抽取3个数.抽到中位数是2022的3个数的概率等于 .
17.(2022•镇江)第1组数据为:0、0、0、1、1、1,第2组数据为:、,其中m、n是正整数下列结论:①当m=n时,两组数据的平均数相等;②当m>n时,第1组数据的平均数小于第2组数据的平均数;③当m<n时,第1组数据的中位数小于第2组数据的中位数;④当m=n时,第2组数据的方差小于第1组数据的方差.其中正确的是( )
A.①② B.①③ C.①④ D.③④
18.(2021•镇江)某射手在一次训练中共射出了10发子弹,射击成绩如图所示,则射击成绩的中位数是 环.
19.(2020•镇江)在从小到大排列的五个数x,3,6,8,12中再加入一个数,若这六个数的中位数、平均数与原来五个数的中位数、平均数分别相等,则x的值为 .
20.(2019•镇江)陈老师对他所教的九(1)、九(2)两个班级的学生进行了一次检测,批阅后对最后一道试题的得分情况进行了归类统计(各类别的得分如下表),并绘制了如图所示的每班各类别得分人数的条形统计图(不完整).
各类别的得分表
得分
类别
0
A:没有作答
1
B:解答但没有正确
3
C:只得到一个正确答案
6
D:得到两个正确答案,解答完全正确
已知两个班一共有50%的学生得到两个正确答案,解答完全正确,九(1)班学生这道试题的平均得分为3.78分.请解决如下问题:
(1)九(2)班学生得分的中位数是 ;
(2)九(1)班学生中这道试题作答情况属于B类和C类的人数各是多少?
21.(2018•镇江)某班50名学生的身高如下(单位:cm):
160 163 152 161 167 154 158 171 156 168
178 151 156 158 165 160 148 155 162 175
158 167 157 153 164 172 153 159 174 155
169 163 158 150 177 155 166 161 159 164
171 154 157 165 152 167 157 162 155 160
(1)小丽用简单随机抽样的方法从这50个数据中抽取一个容量为5的样本:161,155,174,163,152,请你计算小丽所抽取的这个样本的平均数;
(2)小丽将这50个数据按身高相差4cm分组,并制作了如下的表格:
身高
频数
频率
147.5~151.5
0.06
151.5~155.5
155.5~159.5
11
m
159.5~163.5
0.18
163.5~167.5
8
0.16
167.5~171.5
4
171.5~175.5
n
0.06
175.5~179.5
2
合计
50
1
①m= ,n= ;
②这50名学生身高的中位数落在哪个身高段内?身高在哪一段的学生数最多?
22.(2022•镇江)(1)计算:()﹣1﹣tan45°+|﹣1|;
(2)化简:(1﹣)÷(a﹣).
23.(2021•镇江)(1)计算:(1﹣)0﹣2sin45°+;
(2)化简:(x2﹣1)÷(1﹣)﹣x.
24.(2020•镇江)(1)计算:4sin60°﹣+(﹣1)0;
(2)化简(x+1)÷(1+).
25.(2019•镇江)(1)计算:(﹣2)0+()﹣1﹣2cos60°;
(2)化简:(1+)÷.
26.(2018•镇江)(1)计算:2﹣1+(2018﹣π)0﹣sin30°
(2)化简:(a+1)2﹣a(a+1)﹣1.
27.(2022•镇江)(1)解方程:=+1;
(2)解不等式组:.
28.(2021•镇江)(1)解方程:﹣=0;
(2)解不等式组:.
29.(2020•镇江)(1)解方程:=+1;
(2)解不等式组:
30.(2019•镇江)(1)解方程:=+1;
(2)解不等式:4(x﹣1)﹣<x
31.(2018•镇江)(1)解方程:=+1.
(2)解不等式组:
32.(2022•镇江)一次函数y=x+1的图象与x轴交于点A,二次函数y=ax2+bx+c(a≠0)的图象经过点A、原点O和一次函数y=x+1图象上的点B(m,).
(1)求这个二次函数的表达式;
(2)如图1,一次函数y=x+n(n>﹣,n≠1)与二次函数y=ax2+bx+c(a≠0)的图象交于点C(x1,y1)、D(x2,y2)(x1<x2),过点C作直线l1⊥x轴于点E,过点D作直线l2⊥x轴,过点B作BF⊥l2于点F.
①x1= ,x2= (分别用含n的代数式表示);
②证明:AE=BF;
(3)如图2,二次函数y=a(x﹣t)2+2的图象是由二次函数y=ax2+bx+c(a≠0)的图象平移后得到的,且与一次函数y=x+1的图象交于点P、Q(点P在点Q的左侧),过点P作直线l3⊥x轴,过点Q作直线l4⊥x轴,设平移后点A、B的对应点分别为A′、B′,过点A′作A′M⊥l3于点M,过点B′作B′N⊥l4于点N.
①A′M与B′N相等吗?请说明你的理由;
②若A′M+3B′N=2,求t的值.
33.(2021•镇江)将一张三角形纸片ABC放置在如图所示的平面直角坐标系中,点A(﹣6,0),点B(0,2),点C(﹣4,8),二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,该抛物线的对称轴经过点C,顶点为D.
(1)求该二次函数的表达式及点D的坐标;
(2)点M在边AC上(异于点A,C),将三角形纸片ABC折叠,使得点A落在直线AB上,且点M落在边BC上,点M的对应点记为点N,折痕所在直线l交抛物线的对称轴于点P,然后将纸片展开.
①请作出图中点M的对应点N和折痕所在直线l;(要求:尺规作图,不写作法,保留作图痕迹)
②连接MP,NP,在下列选项中:A.折痕与AB垂直,B.折痕与MN的交点可以落在抛物线的对称轴上,C.=,D.=,所有正确选项的序号是 .
③点Q在二次函数y=ax2+bx+c(a≠0)的图象上,当△PDQ∼△PMN时,求点Q的坐标.
34.(2020•镇江)如图①,直线l经过点(4,0)且平行于y轴,二次函数y=ax2﹣2ax+c(a、c是常数,a<0)的图象经过点M(﹣1,1),交直线l于点N,图象的顶点为D,它的对称轴与x轴交于点C,直线DM、DN分别与x轴相交于A、B两点.
(1)当a=﹣1时,求点N的坐标及的值;
(2)随着a的变化,的值是否发生变化?请说明理由;
(3)如图②,E是x轴上位于点B右侧的点,BC=2BE,DE交抛物线于点F.若FB=FE,求此时的二次函数表达式.
35.(2019•镇江)如图,二次函数y=﹣x2+4x+5图象的顶点为D,对称轴是直线l,一次函数y=x+1的图象与x轴交于点A,且与直线DA关于l的对称直线交于点B.
(1)点D的坐标是 ;
(2)直线l与直线AB交于点C,N是线段DC上一点(不与点D、C重合),点N的纵坐标为n.过点N作直线与线段DA、DB分别交于点P、Q,使得△DPQ与△DAB相似.
①当n=时,求DP的长;
②若对于每一个确定的n的值,有且只有一个△DPQ与△DAB相似,请直接写出n的取值范围 .
36.(2018•镇江)如图,二次函数y=x2﹣3x的图象经过O(0,0),A(4,4),B(3,0)三点,以点O为位似中心,在y轴的右侧将△OAB按相似比2:1放大,得到△OA′B′,二次函数y=ax2+bx+c(a≠0)的图象经过O,A′,B′三点.
(1)画出△OA′B′,试求二次函数y=ax2+bx+c(a≠0)的表达式;
(2)点P(m,n)在二次函数y=x2﹣3x的图象上,m≠0,直线OP与二次函数y=ax2+bx+c(a≠0)的图象交于点Q(异于点O).
①求点Q的坐标(横、纵坐标均用含m的代数式表示)
②连接AP,若2AP>OQ,求m的取值范围;
③当点Q在第一象限内,过点Q作QQ′平行于x轴,与二次函数y=ax2+bx+c(a≠0)的图象交于另一点Q′,与二次函数y=x2﹣3x的图象交于点M,N(M在N的左侧),直线OQ′与二次函数y=x2﹣3x的图象交于点P′.△Q′P′M∽△QB′N,则线段NQ的长度等于 .
37.(2022•镇江)下列运算中,结果正确的是( )
A.3a2+2a2=5a4 B.a3﹣2a3=a3
C.a2•a3=a5 D.(a2)3=a5
38.(2020•镇江)下列计算正确的是( )
A.a3+a3=a6 B.(a3)2=a6 C.a6÷a2=a3 D.(ab)3=ab3
39.(2019•镇江)下列计算正确的是( )
A.a2•a3=a6 B.a7÷a3=a4 C.(a3)5=a8 D.(ab)2=ab2
40.(2018•镇江)(a2)3= .
41.(2021•镇江)如图,四边形ABCD是平行四边形,延长DA,BC,使得AE=CF,连接BE,DF.
(1)求证:△ABE≌△CDF;
(2)连接BD,∠1=30°,∠2=20°,当∠ABE= °时,四边形BFDE是菱形.
42.(2020•镇江)如图,AC是四边形ABCD的对角线,∠1=∠B,点E、F分别在AB、BC上,BE=CD,BF=CA,连接EF.
(1)求证:∠D=∠2;
(2)若EF∥AC,∠D=78°,求∠BAC的度数.
43.(2019•镇江)如图,四边形ABCD中,AD∥BC,点E、F分别在AD、BC上,AE=CF,过点A、C分别作EF的垂线,垂足为G、H.
(1)求证:△AGE≌△CHF;
(2)连接AC,线段GH与AC是否互相平分?请说明理由.
44.(2018•镇江)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.
(1)求证:△ABE≌△ACF;
(2)若∠BAE=30°,则∠ADC= °.
江苏省镇江市5年(2018-2022)中考数学真题分类汇编-08高频考点试题分类
参考答案与试题解析
一.试题(共44小题)
1.(2022•镇江)如图,在等腰△ABC中,∠BAC=120°,BC=6,⊙O同时与边BA的延长线、射线AC相切,⊙O的半径为3.将△ABC绕点A按顺时针方向旋转α(0°<α≤360°),B、C的对应点分别为B′、C′,在旋转的过程中边B′C′所在直线与⊙O相切的次数为( )
A.1 B.2 C.3 D.4
【解答】解:如图1,由题意可知⊙O同时与边BA的延长线、射线AC相切,⊙O的半径为3,
设⊙O与边BA的延长线、射线AC分别相切于点T、点G,连接OA交⊙O于点L,连接OT,
∴AT⊥OT,OT=3,
作AE⊥BC于点E,OH⊥BC于点H,则∠AEB=90°,
∵AB=AC,∠BAC=120°,BC=6,
∴BE=CE=BC=3,∠B=∠ACB=(∠180﹣∠BAC)=30°,
∴AE=BE•tan30°=3×=3,
∵∠TAC=180°﹣∠BAC=60°,
∴∠OAG=∠OAT=∠TAC=30°,
∴∠OAG=∠ACB,
∴OA∥BC,
∴OH=AE=OT=OL=3,
∴直线BC与⊙O相切,
∵∠ATO=90°,
∴OA=2OT=6,
∴AL=3,
作AK⊥B′C′于点K,由旋转得AK=AE=3,∠AKB′=∠AEB=90°,
如图2,△ABC绕点A旋转到点K与点L重合,
∵∠OLB′=180°﹣∠ALB′=180°﹣∠AKB′=90°,
∴B′C′⊥OL,
∵OL为⊙O的半径,
∴B′C′与⊙O相切;
如图3,△ABC绕点A旋转到B′C′∥OA,作OR⊥B′C′交C′B′的延长线于点R,
∵OR=AK=3,
∴B′C′与⊙O相切;
当△ABC绕点A旋转到B′C′与BC重合,即旋转角α=360°,则B′C′与⊙O相切,
综上所述,在旋转的过程中边B′C′所在直线与⊙O相切3次,
故选:C.
2.(2021•镇江)如图,∠BAC=36°,点O在边AB上,⊙O与边AC相切于点D,交边AB于点E,F,连接FD,则∠AFD等于( )
A.27° B.29° C.35° D.37°
【解答】解:连接OD,
∵⊙O与边AC相切于点D,
∴∠ADO=90°,
∵∠BAC=36°,
∴∠AOD=90°﹣36°=54°,
∴∠AFD=AOD=54°=27°,
故选:A.
3.(2021•镇江)如图1,正方形ABCD的边长为4,点P在边BC上,⨀O经过A,B,P三点.
(1)若BP=3,判断边CD所在直线与⊙O的位置关系,并说明理由;
(2)如图2,E是CD的中点,⊙O交射线AE于点Q,当AP平分∠EAB时,求tan∠EAP的值.
【解答】解:(1)如图1﹣1中,连接AP,过点O作OH⊥AB于H,交CD于E.
∵四边形ABCD是正方形,
∴AB=AD=4,∠ABP=90°,
∴AP是直径,
∴AP===5,
∵OH⊥AB,
∴AH=BH,
∵OA=OP,AH=HB,
∴OH=PB=,
∵∠D=∠DAH=∠AHE=90°,
∴四边形AHED是矩形,
∴OE⊥CE,EH=AD=4,
∴OE=EH﹣OH=4﹣=,
∴OE=OP,
∴直线CD与⊙O相切.
(2)如图2中,延长AE交BC的延长线于T,连接PQ.
∵∠D=∠ECT=90°,DE=EC,∠AED=∠TEC,
∴△ADE≌△TCE(ASA),
∴AD=CT=4,
∴BT=BC+CT=4+4=8,
∵∠ABT=90°,
∴AT===4,
∵AP是直径,
∴∠AQP=90°,
∵PA平分∠EAB,PQ⊥AQ,PB⊥AB,
∴PB=PQ,
设PB=PQ=x,
∵S△ABT=S△ABP+S△APT,
∴×4×8=×4×x+×4×x,
∴x=2﹣2,
∴tan∠EAP=tan∠PAB==.
备注:本题也可以用面积法,连接PQ,PE,设BP=x,
在Rt△PEQ中,
PE2=x2+(2﹣4)2,
在Rt△PEC中,
PE2=(4﹣x)2+22,
则x2+(2﹣4)2=(4﹣x)2+22,
解得x=PB=2﹣2,
∴tan∠EAP=tan∠PAB==.
4.(2020•镇江)如图,AB是半圆的直径,C、D是半圆上的两点,∠ADC=106°,则∠CAB等于( )
A.10° B.14° C.16° D.26°
【解答】解:连接BD,如图,
∵AB是半圆的直径,
∴∠ADB=90°,
∴∠BDC=∠ADC﹣∠ADB=106°﹣90°=16°,
∴∠CAB=∠BDC=16°.
故选:C.
5.(2020•镇江)如图,▱ABCD中,∠ABC的平分线BO交边AD于点O,OD=4,以点O为圆心,OD长为半径作⊙O,分别交边DA、DC于点M、N.点E在边BC上,OE交⊙O于点G,G为的中点.
(1)求证:四边形ABEO为菱形;
(2)已知cos∠ABC=,连接AE,当AE与⊙O相切时,求AB的长.
【解答】解:(1)证明:∵G为的中点,
∴∠MOG=∠MDN.
∵四边形ABCD是平行四边形.
∴AO∥BE,∠MDN+∠A=180°,
∴∠MOG+∠A=180°,
∴AB∥OE,
∴四边形ABEO是平行四边形.
∵BO平分∠ABE,
∴∠ABO=∠OBE,
又∵∠OBE=∠AOB,
∴∠ABO=∠AOB,
∴AB=AO,
∴四边形ABEO为菱形;
(2)如图,过点O作OP⊥BA,交BA的延长线于点P,过点O作OQ⊥BC于点Q,设AE交OB于点F,
则∠PAO=∠ABC,
设AB=AO=OE=x,则
∵cos∠ABC=,
∴cos∠PAO=,
∴=,
∴PA=x,
∴OP=OQ=x
当AE与⊙O相切时,由菱形的对角线互相垂直,可知F为切点,
∴在Rt△OBQ中,由勾股定理得:+=82,
解得:x=2(舍负).
∴AB的长为2.
6.(2019•镇江)如图,四边形ABCD是半圆的内接四边形,AB是直径,=.若∠C=110°,则∠ABC的度数等于( )
A.55° B.60° C.65° D.70°
【解答】解:连接AC,
∵四边形ABCD是半圆的内接四边形,
∴∠DAB=180°﹣∠C=70°,
∵=,
∴∠CAB=∠DAB=35°,
∵AB是直径,
∴∠ACB=90°,
∴∠ABC=90°﹣∠CAB=55°,
故选:A.
7.(2019•镇江)如图,在△ABC中,AB=AC,过AC延长线上的点O作OD⊥AO,交BC的延长线于点D,以O为圆心,OD长为半径的圆过点B.
(1)求证:直线AB与⊙O相切;
(2)若AB=5,⊙O的半径为12,则tan∠BDO= .
【解答】(1)证明:连接OB,如图所示:
∵AB=AC,
∴∠ABC=∠ACB,
∵∠ACB=∠OCD,
∴∠ABC=∠OCD,
∵OD⊥AO,
∴∠COD=90°,
∴∠D+∠OCD=90°,
∵OB=OD,
∴∠OBD=∠D,
∴∠OBD+∠ABC=90°,
即∠ABO=90°,
∴AB⊥OB,
∵点B在圆O上,
∴直线AB与⊙O相切;
(2)解:∵∠ABO=90°,
∴OA===13,
∵AC=AB=5,
∴OC=OA﹣AC=8,
∴tan∠BDO===;
故答案为:.
8.(2018•镇江)如图,AD为△ABC的外接圆⊙O的直径,若∠BAD=50°,则∠ACB= 40 °.
【解答】解:连接BD,如图,
∵AD为△ABC的外接圆⊙O的直径,
∴∠ABD=90°,
∴∠D=90°﹣∠BAD=90°﹣50°=40°,
∴∠ACB=∠D=40°.
故答案为40.
9.(2022•镇江)一只不透明的袋子中装有2个白球、1个红球,这些球除颜色外都相同.
(1)搅匀后从中任意摸出一个球,摸到红球的概率等于 ;
(2)搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出一个球.用列表或画树状图的方法,求2次都摸到红球的概率.
【解答】解:(1)搅匀后从中任意摸出一个球,摸到红球的概率等于=,
故答案为:;
(2)画树状图如下:
共有9种等可能的结果,其中2次都摸到红球的结果有1种,
∴2次都摸到红球的概率为.
10.(2021•镇江)一只不透明的袋子中装有1个黄球,现放若干个红球,它们与黄球除颜色外都相同,搅匀后从中任意摸出两个球,使得P(摸出一红一黄)=P(摸出两红),则放入的红球个数为 3 .
【解答】解:假设袋中红球个数为1,
此时袋中有1个黄球、1个红球,
搅匀后从中任意摸出两个球,P(摸出一红一黄)=1,P(摸出两红)=0,不符合题意.
假设袋中的红球个数为2,
列树状图如下:
由图可知,共有6种情况,其中两次摸到红球的情况有2种,摸出一红一黄的有4种结果,
∴P(摸出一红一黄)==,P(摸出两红)==,不符合题意,
假设袋中的红球个数为3,
画树状图如下:
由图可知,共有12种情况,其中两次摸到红球的情况有6种,摸出一红一黄的有6种结果,
∴P(摸出一红一黄)=P(摸出两红)==,符合题意,
所以放入的红球个数为3,
故答案为:3.
11.(2021•镇江)甲、乙、丙三人各自随机选择到A,B两个献血站进行爱心献血.求这三人在同一个献血站献血的概率.
【解答】解:画树状图得:
共8种等可能情况,其中这三人在同一个献血站献血的有2种结果,
所以这三人在同一个献血站献血的概率为=.
12.(2020•镇江)智慧的中国古代先民发明了抽象的符号来表达丰富的含义.例如,符号“☰”有刚毅的含义,符号“☱”有愉快的含义.符号中的“”表示“阴”,“”表示“阳”,类似这样自上而下排成的三行符号还有其他的含义.所有这些三行符号中,每一行只有一个阴或一个阳,且出现阴、阳的可能性相同.
(1)所有这些三行符号共有 8 种;
(2)若随机画一个这样的三行符号,求“画出含有一个阴和两个阳的三行符号”的概率.
【解答】解:(1)根据题意画图如下:
共有8种等可能的情况数,
故答案为:8;
(2)根据第(1)问一个阴、两个阳的共有3种,
则有一个阴和两个阳的三行符号”的概率是.
13.(2019•镇江)如图,有两个转盘A、B,在每个转盘各自的两个扇形区域中分别标有数字1,2,分别转动转盘A、B,当转盘停止转动时,若事件“指针都落在标有数字1的扇形区域内”的概率是,则转盘B中标有数字1的扇形的圆心角的度数是 80 °.
【解答】解:设转盘B中指针落在标有数字1的扇形区域内的概率为x,
根据题意得:,
解得,
∴转盘B中标有数字1的扇形的圆心角的度数为:360°×=80°.
故答案为:80.
14.(2019•镇江)小丽和小明将在下周的星期一到星期三这三天中各自任选一天担任值日工作,请用画树状图或列表格的方法,求小丽和小明在同一天值日的概率.
【解答】解:根据题意画树状图如下:
共有9种等情况数,其中小丽和小明在同一天值日的有3种,
则小丽和小明在同一天值日的概率是=.
15.(2018•镇江)如图,数轴上的点A,B,C,D表示的数分别为﹣3,﹣1,1,2,从A,B,C,D四点中任意取两点,求所取两点之间的距离为2的概率.
【解答】解:画树状图为:
共有12种等可能的结果数,其中所取两点之间的距离为2的结果数为4,
所以所取两点之间的距离为2的概率==.
16.(2022•镇江)从2021、2022、2023、2024、2025这五个数中任意抽取3个数.抽到中位数是2022的3个数的概率等于 .
【解答】解:从2021、2022、2023、2024、2025这五个数中任意抽取3个数为:2021、2022、2023,2021、2022、2024,2021、2022、2025,2021、2023、2024,2021、2023、2025,2021、2024、2025,2022、2023、2024,2022、2023、2025,2022、2024、2025,2023、2024、2025,
共有10种等可能情况,其中中位数是2022有3种情况,
∴抽到中位数是2022的3个数的概率为,
故答案为:.
17.(2022•镇江)第1组数据为:0、0、0、1、1、1,第2组数据为:、,其中m、n是正整数下列结论:①当m=n时,两组数据的平均数相等;②当m>n时,第1组数据的平均数小于第2组数据的平均数;③当m<n时,第1组数据的中位数小于第2组数据的中位数;④当m=n时,第2组数据的方差小于第1组数据的方差.其中正确的是( )
A.①② B.①③ C.①④ D.③④
【解答】解:①第1组平均数为:0.5;
当m=n时,第2组平均数为:==0.5;
∴①正确;
②当m>n时,m+n>2n,<0.5;
∴第1组数据的平均数大于第2组数据的平均数;
∴②错误;
③第1组数据的中位数=0.5;
当m<n时,若m+n为奇数,第2组数据的中位数是1,若m+n为偶数,第2组数据的中位数是1,
∴当m<n时,第2组数据的中位数是1,
∴m<n时,第1组数据的中位数小于第2组数据的中位数;
∴③正确;
④第1组数据的方差:=0.25;
第2组数据的方差:=0.25;
∴当m=n时,第2组数据的方差等于第1组数据的方差;
∴④错误;
故答案为:B.
18.(2021•镇江)某射手在一次训练中共射出了10发子弹,射击成绩如图所示,则射击成绩的中位数是 9 环.
【解答】解:由统计图可得,
中间的两个数据是9,9,故射击成绩的中位数是(9+9)÷2=9(环),
故答案为:9.
19.(2020•镇江)在从小到大排列的五个数x,3,6,8,12中再加入一个数,若这六个数的中位数、平均数与原来五个数的中位数、平均数分别相等,则x的值为 1 .
【解答】解:从小到大排列的五个数x,3,6,8,12的中位数是6,
∵再加入一个数,这六个数的中位数与原来五个数的中位数相等,
∴加入的一个数是6,
∵这六个数的平均数与原来五个数的平均数相等,
∴(x+3+6+8+12)=(x+3+6+6+8+12),
解得x=1.
故答案为:1.
20.(2019•镇江)陈老师对他所教的九(1)、九(2)两个班级的学生进行了一次检测,批阅后对最后一道试题的得分情况进行了归类统计(各类别的得分如下表),并绘制了如图所示的每班各类别得分人数的条形统计图(不完整).
各类别的得分表
得分
类别
0
A:没有作答
1
B:解答但没有正确
3
C:只得到一个正确答案
6
D:得到两个正确答案,解答完全正确
已知两个班一共有50%的学生得到两个正确答案,解答完全正确,九(1)班学生这道试题的平均得分为3.78分.请解决如下问题:
(1)九(2)班学生得分的中位数是 6分 ;
(2)九(1)班学生中这道试题作答情况属于B类和C类的人数各是多少?
【解答】解:(1)由条形图可知九(2)班一共有学生:3+6+12+27=48人,
将48个数据按从小到大的顺序排列,第24、25个数据都在D类,所以中位数是6分.
故答案为6分;
(2)两个班一共有学生:(22+27)÷50%=98(人),
九(1)班有学生:98﹣48=50(人).
设九(1)班学生中这道试题作答情况属于B类和C类的人数各是x人、y人.
由题意,得,
解得.
答:九(1)班学生中这道试题作答情况属于B类和C类的人数各是6人、17人.
21.(2018•镇江)某班50名学生的身高如下(单位:cm):
160 163 152 161 167 154 158 171 156 168
178 151 156 158 165 160 148 155 162 175
158 167 157 153 164 172 153 159 174 155
169 163 158 150 177 155 166 161 159 164
171 154 157 165 152 167 157 162 155 160
(1)小丽用简单随机抽样的方法从这50个数据中抽取一个容量为5的样本:161,155,174,163,152,请你计算小丽所抽取的这个样本的平均数;
(2)小丽将这50个数据按身高相差4cm分组,并制作了如下的表格:
身高
频数
频率
147.5~151.5
3
0.06
151.5~155.5
10
0.20
155.5~159.5
11
m
159.5~163.5
9
0.18
163.5~167.5
8
0.16
167.5~171.5
4
0.08
171.5~175.5
n
0.06
175.5~179.5
2
0.04
合计
50
1
①m= 0.22 ,n= 3 ;
②这50名学生身高的中位数落在哪个身高段内?身高在哪一段的学生数最多?
【解答】解:(1)=(161+155+174+163+152)=161;
(2)①如表可知,m=0.22,n=3,
故答案为:0.22;3;
②这50名学生身高的中位数落在159.5~163.5,
身高在155.5~159.5的学生数最多.
22.(2022•镇江)(1)计算:()﹣1﹣tan45°+|﹣1|;
(2)化简:(1﹣)÷(a﹣).
【解答】解:(1)原式=2﹣1+﹣1
=;
(2)原式=(﹣)÷(﹣)
=×
=
=.
23.(2021•镇江)(1)计算:(1﹣)0﹣2sin45°+;
(2)化简:(x2﹣1)÷(1﹣)﹣x.
【解答】解:(1)原式=1﹣2×+=1.
(2)原式=(x+1)(x﹣1)÷﹣x
=(x+1)(x﹣1)•﹣x
=x(x+1)﹣x
=x(x+1﹣1)
=x2.
24.(2020•镇江)(1)计算:4sin60°﹣+(﹣1)0;
(2)化简(x+1)÷(1+).
【解答】解:(1)原式=4×﹣2+1
=2﹣2+1
=1;
(2)原式=(x+1)÷(+)
=(x+1)÷
=(x+1)•
=x.
25.(2019•镇江)(1)计算:(﹣2)0+()﹣1﹣2cos60°;
(2)化简:(1+)÷.
【解答】解:(1)(﹣2)0+()﹣1﹣2cos60°
=1+3﹣1
=3;
(2)(1+)÷
=(+)÷
=•
=x+1.
26.(2018•镇江)(1)计算:2﹣1+(2018﹣π)0﹣sin30°
(2)化简:(a+1)2﹣a(a+1)﹣1.
【解答】解:(1)原式=+1﹣=1;
(2)原式=a2+2a+1﹣a2﹣a﹣1=a.
27.(2022•镇江)(1)解方程:=+1;
(2)解不等式组:.
【解答】解:(1)去分母得:2=1+x+x﹣2,
解得:x=,
检验:当x=时,x﹣2≠0,
∴原分式方程的解为x=;
(2),
解不等式①得:x>﹣1,
解不等式②得:x≤3,
∴原不等式组的解集是﹣1<x≤3.
28.(2021•镇江)(1)解方程:﹣=0;
(2)解不等式组:.
【解答】解:(1)去分母得:3(x﹣2)﹣2x=0,
去括号得:3x﹣6﹣2x=0,
解得:x=6,
检验:把x=6代入得:x(x﹣2)=24≠0,
∴分式方程的解为x=6;
(2),
由①得:x≥1,
由②得:x>2,
则不等式组的解集为x>2.
29.(2020•镇江)(1)解方程:=+1;
(2)解不等式组:
【解答】解:(1)=+1,
2x=1+x+3,
2x﹣x=1+3,
x=4,
经检验,x=4是原方程的解,
∴此方程的解是x=4;
(2),
①4x﹣x>﹣2﹣7,
3x>﹣9,
x>﹣3;
②3x﹣6<4+x,
3x﹣x<4+6,
2x<10,
x<5,
∴不等式组的解集是﹣3<x<5.
30.(2019•镇江)(1)解方程:=+1;
(2)解不等式:4(x﹣1)﹣<x
【解答】解;(1)方程两边同乘以(x﹣2)得
2x=3+x﹣2
∴x=1
检验:将x=1代入(x﹣2)得1﹣2=﹣1≠0
x=1是原方程的解.
∴原方程的解是x=1.
(2)化简4(x﹣1)﹣<x得
4x﹣4﹣<x
∴3x<
∴x<
∴原不等式的解集为x<.
31.(2018•镇江)(1)解方程:=+1.
(2)解不等式组:
【解答】解:(1)两边都乘以(x﹣1)(x+2),得:x(x﹣1)=2(x+2)+(x﹣1)(x+2),
解得:x=﹣,
检验:当x=﹣时,(x﹣1)(x+2)≠0,
∴分式方程的解为x=﹣;
(2)解不等式2x﹣4>0,得:x>2,
解不等式x+1≤4(x﹣2),得:x≥3,
则不等式组的解集为x≥3.
32.(2022•镇江)一次函数y=x+1的图象与x轴交于点A,二次函数y=ax2+bx+c(a≠0)的图象经过点A、原点O和一次函数y=x+1图象上的点B(m,).
(1)求这个二次函数的表达式;
(2)如图1,一次函数y=x+n(n>﹣,n≠1)与二次函数y=ax2+bx+c(a≠0)的图象交于点C(x1,y1)、D(x2,y2)(x1<x2),过点C作直线l1⊥x轴于点E,过点D作直线l2⊥x轴,过点B作BF⊥l2于点F.
①x1= ,x2= (分别用含n的代数式表示);
②证明:AE=BF;
(3)如图2,二次函数y=a(x﹣t)2+2的图象是由二次函数y=ax2+bx+c(a≠0)的图象平移后得到的,且与一次函数y=x+1的图象交于点P、Q(点P在点Q的左侧),过点P作直线l3⊥x轴,过点Q作直线l4⊥x轴,设平移后点A、B的对应点分别为A′、B′,过点A′作A′M⊥l3于点M,过点B′作B′N⊥l4于点N.
①A′M与B′N相等吗?请说明你的理由;
②若A′M+3B′N=2,求t的值.
【解答】(1)解:∵直线y=x+1与x轴交于点A,
令y=0,得x+1=0,
解得:x=﹣2,
∴A(﹣2,0),
∵直线y=x+1经过点B(m,),
∴m+1=,
解得:m=,
∴B(,),
∵抛物线y=ax2+bx+c(a≠0)经过A(﹣2,0),O(0,0),B(,),
设y=ax(x+2),则=a××(+2),
解得:a=1,
∴y=x(x+2)=x2+2x,
∴这个二次函数的表达式为y=x2+2x;
(2)①解:由题意得:x2+2x=x+n(n>﹣),
解得:x1=,x2=,
故答案为:,;
②证明:当n>1时,CD位于AB的上方,
∵A(﹣2,0),B(,),
∴AE=﹣2﹣=,BF=﹣=,
∴AE=BF,
当<n<1时,CD位于AB的下方,
∵A(﹣2,0),B(,),
∴AE=﹣(﹣2)=,BF=﹣=,
∴AE=BF,
∴当n>﹣且n≠1时,AE=BF;
(3)①设P、Q平移前的对应点分别为P′、Q′,则P′Q′∥PQ,
∴P′Q′∥AB,
∵平移后点A、B的对应点分别为A′、B′,
由(2)②及平移的性质可知:A′M=B′N;
②∵A′M+3B′N=2,
∴A′M=B′N=,
∵平移前二次函数y=x2+2x的图象的顶点为(﹣1,﹣1),平移后二次函数y=(x﹣t)2+2的图象的顶点为(t,2),
∴新二次函数的图象是由原二次函数的图象向右平移(t+1)个单位,向上平移3个单位得到的,
∴B(,)的对应点为B′(t+,),
∵B′N=,
∴点Q的横坐标为t+1或t+2,代入y=x+1,得y=(t+1)+1=t+或y=(t+2)+1=t+2,
∴Q(t+1,t+)或(t+2,t+2),
将点Q的坐标代入y=(x﹣t)2+2中,得t+=(t+1﹣t)2+2或t+2=(t+2﹣t)2+2,
解得:t=3或8.
33.(2021•镇江)将一张三角形纸片ABC放置在如图所示的平面直角坐标系中,点A(﹣6,0),点B(0,2),点C(﹣4,8),二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,该抛物线的对称轴经过点C,顶点为D.
(1)求该二次函数的表达式及点D的坐标;
(2)点M在边AC上(异于点A,C),将三角形纸片ABC折叠,使得点A落在直线AB上,且点M落在边BC上,点M的对应点记为点N,折痕所在直线l交抛物线的对称轴于点P,然后将纸片展开.
①请作出图中点M的对应点N和折痕所在直线l;(要求:尺规作图,不写作法,保留作图痕迹)
②连接MP,NP,在下列选项中:A.折痕与AB垂直,B.折痕与MN的交点可以落在抛物线的对称轴上,C.=,D.=,所有正确选项的序号是 A,D .
③点Q在二次函数y=ax2+bx+c(a≠0)的图象上,当△PDQ∼△PMN时,求点Q的坐标.
【解答】解(1)由题意得:,
解之得:a=,b=,c=2,
∴y=+,
∴当x=﹣4时,y==﹣,
∴D(﹣4,﹣).
(2)①如图1中,点N,直线l即为所求.
②如图2中,设线段MN的垂直平分线交抛物线对称轴于P,交MN于点Q,过点M作MH⊥CD,过点Q作QJ⊥CD于J,QT⊥MH于T.
由题意A(﹣6,0),B(0,2),C(﹣4,8),
∴直线AC的解析式为y=4x+24,直线AB的解析式为y=x+2,直线BC的解析式为y=﹣x+2,
∵MN∥AB,
∴可以假设直线MN的解析式为y=x+t,
由,解得,
∴M(,),
由.解得,
∴N(,),
∴Q(,),
∵QJ⊥CD,QT⊥MH,
∴QJ=+4=,QT=﹣=,
∴QJ=QT,
∵∠PJQ=∠MTQ=90°,∠QPJ=∠QMT,QJ=QT,
∴△PJQ≌△MTQ(AAS),
∴PQ=MQ,
∵∠PQM=90°,
∴∠PMN=∠MPQ=45°,
∵PM=PN,
∴∠PMN=∠PNM=45°,
∴∠MPN=90°,
∴△PMN是等腰直角三角形,
∴=,故选项D正确,B,C错误,
∵将三角形纸片ABC折叠,使得点A落在直线AB上,且点M落在边BC上,
∴折痕与AB垂直,故选项A正确,
故答案为:A,D.
③设P(﹣4,m).
∵△PDQ∽△PMN,△PMN是等腰直角三角形,
∴△PDQ是等腰直角三角形,
∴∠DPQ=90°,DP=PQ=m+,
∴Q(﹣4+m+,m),即Q(﹣+m,m),
把Q的坐标代入y=+,得到,m=(﹣+m)2+(﹣+m)+2,
整理得,9m2﹣42m﹣32=0,
解得m=或﹣(舍弃),
∴Q(2,),
根据对称性可知Q′(﹣10,)也满足条件,
综上所述,满足条件的点Q的坐标为(2,)或(﹣10,).
34.(2020•镇江)如图①,直线l经过点(4,0)且平行于y轴,二次函数y=ax2﹣2ax+c(a、c是常数,a<0)的图象经过点M(﹣1,1),交直线l于点N,图象的顶点为D,它的对称轴与x轴交于点C,直线DM、DN分别与x轴相交于A、B两点.
(1)当a=﹣1时,求点N的坐标及的值;
(2)随着a的变化,的值是否发生变化?请说明理由;
(3)如图②,E是x轴上位于点B右侧的点,BC=2BE,DE交抛物线于点F.若FB=FE,求此时的二次函数表达式.
【解答】解:(1)分别过点M、N作MG⊥CD于点E,NT⊥DC于点T,
∵MG∥TN∥x轴,
∴△DMG∽△DAC,△DCB∽△DTN,
∴,=,
∵a=﹣1,则y=﹣x2+2x+c,
将M(﹣1,1)代入上式并解得:c=4,
∴抛物线的表达式为:y=﹣x2+2x+4,
则点D(1,5),N(4,﹣4),
则MG=2,DG=4,DC=5,TN=3,DT=9,
∴,解得:AC=,BC=,
∴=;
(2)不变,
理由:∵y=ax2﹣2ax+c过点M(﹣1,1),则a+2a+c=1,
解得:c=1﹣3a,
∴y=ax2﹣2ax+(1﹣3a),
∴点D(1,1﹣4a),N(4,1+5a),
∴MG=2,DG=﹣4a,DC=1﹣4a,TN=3,DT=﹣9a,
由(1)的结论得:AC=,BC=,
∴=;
(3)过点F作FH⊥x轴于点H,则FH∥l,则△FHE∽△DCE,
∵FB=FE,FH⊥BE,
∴BH=HE,
∵BC=2BE,
则CE=6HE,
∵CD=1﹣4a,
∴FH=,
∵BC=,
∴CH=×=,
∴F(﹣+1,﹣a),
将点F的坐标代入y=ax2﹣2ax+(1﹣3a)=a(x+1)(x﹣3)+1得:
﹣a=a(﹣+1+1)(﹣+1﹣3)+1,
解得:a=﹣或(舍弃),
经检验a=﹣,
故y=﹣x2+x+.
解法二:∵AC:BC=3:2,BC=2BE,
∴AC=CE,
∴AD与DE关于直线CD对称,
∵AD,DE交抛物线于M,F,
∴M,F关于直线CD对称,
∴F(3,1),
∴﹣a=1,
∴a=﹣.
故y=﹣x2+x+.
35.(2019•镇江)如图,二次函数y=﹣x2+4x+5图象的顶点为D,对称轴是直线l,一次函数y=x+1的图象与x轴交于点A,且与直线DA关于l的对称直线交于点B.
(1)点D的坐标是 (2,9) ;
(2)直线l与直线AB交于点C,N是线段DC上一点(不与点D、C重合),点N的纵坐标为n.过点N作直线与线段DA、DB分别交于点P、Q,使得△DPQ与△DAB相似.
①当n=时,求DP的长;
②若对于每一个确定的n的值,有且只有一个△DPQ与△DAB相似,请直接写出n的取值范围 <n< .
【解答】解:(1)顶点为D(2,9);
故答案为(2,9);
(2)对称轴x=2,
∴C(2,),
由已知可求A(﹣,0),
点A关于x=2对称点为(,0),
则AD关于x=2对称的直线为y=﹣2x+13,
∴B(5,3),
①当n=时,N(2,),
∴DA=,DN=,CD=
当PQ∥AB时,△DPQ∽△DAB,
∴△DAC∽△DPN,
∴,
∴DP=;
当PQ与AB不平行时,△DPQ∽△DBA,
∴△DNQ∽△DCA,
∴==
∴DP=;
综上所述,DP=,DP=;
②当PQ∥AB,DB=DP时,
DB=3,
∴,
∴DN=,
∴N(2,),
∴有且只有一个△DPQ与△DAB相似时,<n<;
故答案为<n<;
36.(2018•镇江)如图,二次函数y=x2﹣3x的图象经过O(0,0),A(4,4),B(3,0)三点,以点O为位似中心,在y轴的右侧将△OAB按相似比2:1放大,得到△OA′B′,二次函数y=ax2+bx+c(a≠0)的图象经过O,A′,B′三点.
(1)画出△OA′B′,试求二次函数y=ax2+bx+c(a≠0)的表达式;
(2)点P(m,n)在二次函数y=x2﹣3x的图象上,m≠0,直线OP与二次函数y=ax2+bx+c(a≠0)的图象交于点Q(异于点O).
①求点Q的坐标(横、纵坐标均用含m的代数式表示)
②连接AP,若2AP>OQ,求m的取值范围;
③当点Q在第一象限内,过点Q作QQ′平行于x轴,与二次函数y=ax2+bx+c(a≠0)的图象交于另一点Q′,与二次函数y=x2﹣3x的图象交于点M,N(M在N的左侧),直线OQ′与二次函数y=x2﹣3x的图象交于点P′.△Q′P′M∽△QB′N,则线段NQ的长度等于 6 .
【解答】解:(1)由以点O为位似中心,在y轴的右侧将△OAB按相似比2:1放大,得==2
∵A(4,4),B(3,0)
∴A′(8,8),B′(6,0)
将O(0,0),A′(8,8),B′(6,0)代入y=ax2+bx+c
得
解得
∴二次函数的解析式为y=x2﹣3x;
(2)①∵点P在y=x2﹣3x的图象上,
∴n=m2﹣3m,
∴P(m,m2﹣3m),
设直线OP的解析式为y=kx
将点P代入,得mk=m2﹣3m,解得k=m﹣3,
∴OP:y=(m﹣3)x
∵直线OP与y=x2﹣3x交于点Q
∴x2﹣3x=(m﹣3)x,解得x1=0(舍),x2=2m,
∴Q(2m,2m2﹣6m)
②∵P(m,n)在二次函数y=x2﹣3x的图象上
∴n=m2﹣3m
∴P(m,m2﹣3m)
设直线OP的解析式为y=kx,将点P(m,m2﹣3m)代入函数解析式,
得mk=m2﹣3m
∴k=m﹣3
∴OP的解析是为y=(m﹣3)x
∵OP与y=x2﹣3x交于Q点
∴
解得(不符合题意舍去)
∴Q(2m,2m2﹣6m)过点P作PC⊥x轴于点C,过点Q作QD⊥x轴于点D
则OC=|m|,PC=|m2﹣3m|,OD=|2m|,QD=|2m2﹣6m|
∵==2
∴△OCP∽△ODQ
∴OQ=2OP
∵2AP>OQ
∴2AP>2OP,即AP>OP
∴>
化简,得m2﹣2m﹣4<0,解得1﹣<m<1+,且m≠0;
③P(m,m2﹣3m),Q(2m,2m2﹣6m)
∵点Q在第一象限,
∴,解得m>3
由Q(2m,2m2﹣6m),得QQ′的表达式是y=2m2﹣6m
∵QQ′交y=x2﹣3x交于点Q′
解得(不符合题意,舍)
∴Q′(6﹣2m,2m2﹣6m)
设OQ′的解析式为y=kx,(6﹣2m)k=2m2﹣6m
解得k=﹣m,OQ′的解析式为y=﹣mx,
∵OQ′与y=x2﹣3x交于点P′
∴﹣mx=x2﹣3x
解得x1=0(舍),x2=3﹣m
∴P′(3﹣m,m2﹣3m)
∵QQ′与y=x2﹣3x交于点P′
∴﹣mx=x2﹣3x
解得x1=0(舍去),x2=3﹣m
∴P′(3﹣m,m2﹣3m)
∵QQ′与y=x2﹣3x交于点M、N
∴x2﹣3x=2m2﹣6m
解得x1=,x2=
∵M在N左侧
∴M(,2m2﹣6m)
N(,2m2﹣6m)
∵△Q′P′M∽△QB′N
∴
∵,
化简得m2﹣12m+27=0
解得:m1=3(舍),m2=9
∴N(12,108),Q(18,108)
∴QN=6.
故答案为:6.
37.(2022•镇江)下列运算中,结果正确的是( )
A.3a2+2a2=5a4 B.a3﹣2a3=a3
C.a2•a3=a5 D.(a2)3=a5
【解答】解:A.3a2+2a2=5a2,故此选项不合题意;
B.a3﹣2a3=﹣a3,故此选项不合题意;
C.a2•a3=a5,故此选项符合题意;
D.(a2)3=a6,故此选项不合题意;
故选:C.
38.(2020•镇江)下列计算正确的是( )
A.a3+a3=a6 B.(a3)2=a6 C.a6÷a2=a3 D.(ab)3=ab3
【解答】解:a3+a3=2a3,因此选项A不正确;
(a3)2=a3×2=a6,因此选项B正确;
a6÷a2=a6﹣2=a4,因此选项C不正确;
(ab)3=a3b3,因此选项D不正确;
故选:B.
39.(2019•镇江)下列计算正确的是( )
A.a2•a3=a6 B.a7÷a3=a4 C.(a3)5=a8 D.(ab)2=ab2
【解答】解:A、a2•a3=a5,故此选项错误;
B、a7÷a3=a4,正确;
C、(a3)5=a15,故此选项错误;
D、(ab)2=a2b2,故此选项错误;
故选:B.
40.(2018•镇江)(a2)3= a6 .
【解答】解:原式=a6.
故答案为a6.
41.(2021•镇江)如图,四边形ABCD是平行四边形,延长DA,BC,使得AE=CF,连接BE,DF.
(1)求证:△ABE≌△CDF;
(2)连接BD,∠1=30°,∠2=20°,当∠ABE= 10 °时,四边形BFDE是菱形.
【解答】证明:(1)∵四边形ABCD是平行四边形,
∴AB=CD,∠BAD=∠BCD,
∴∠1=∠DCF,
在△ABE和△CDF中,
,
∴△ABE≌△CDF(SAS);
(2)当∠ABE=10°时,四边形BFDE是菱形,
理由如下:∵△ABE≌△CDF,
∴BE=DF,AE=CF,
∴BF=DE,
∴四边形BFDE是平行四边形,
∵∠1=30°,∠2=20°,
∴∠ABD=∠1﹣∠2=10°,
∵∠ABE=10°,
∴∠DBE=20°,
∴∠DBE=∠2=20°,
∴BE=DE,
∴平行四边形BFDE是菱形,
故答案为10.
42.(2020•镇江)如图,AC是四边形ABCD的对角线,∠1=∠B,点E、F分别在AB、BC上,BE=CD,BF=CA,连接EF.
(1)求证:∠D=∠2;
(2)若EF∥AC,∠D=78°,求∠BAC的度数.
【解答】证明:(1)在△BEF和△CDA中,
,
∴△BEF≌△CDA(SAS),
∴∠D=∠2;
(2)∵∠D=∠2,∠D=78°,
∴∠D=∠2=78°,
∵EF∥AC,
∴∠2=∠BAC=78°.
43.(2019•镇江)如图,四边形ABCD中,AD∥BC,点E、F分别在AD、BC上,AE=CF,过点A、C分别作EF的垂线,垂足为G、H.
(1)求证:△AGE≌△CHF;
(2)连接AC,线段GH与AC是否互相平分?请说明理由.
【解答】(1)证明:∵AG⊥EF,CH⊥EF,
∴∠G=∠H=90°,AG∥CH,
∵AD∥BC,
∴∠DEF=∠BFE,
∵∠AEG=∠DEF,∠CFH=∠BFE,
∴∠AEG=∠CFH,
在△AGE和△CHF中,,
∴△AGE≌△CHF(AAS);
(2)解:线段GH与AC互相平分,理由如下:
连接AH、CG,如图所示:
由(1)得:△AGE≌△CHF,
∴AG=CH,
∵AG∥CH,
∴四边形AHCG是平行四边形,
∴线段GH与AC互相平分.
44.(2018•镇江)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.
(1)求证:△ABE≌△ACF;
(2)若∠BAE=30°,则∠ADC= 75 °.
【解答】(1)证明:∵AB=AC,
∴∠B=∠ACF,
在△ABE和△ACF中,
,
∴△ABE≌△ACF(SAS);
(2)∵△ABE≌△ACF,∠BAE=30°,
∴∠BAE=∠CAF=30°,
∵AD=AC,
∴∠ADC=∠ACD,
∴∠ADC==75°,
故答案为:75.
相关试卷
这是一份江苏省镇江市5年(2018-2022)中考数学真题分类汇编-07解答题(压轴题)知识点分类,共28页。试卷主要包含了的图象经过O,A′,B′三点,是半圆O的一个圆心角等内容,欢迎下载使用。
这是一份江苏省镇江市5年(2018-2022)中考数学真题分类汇编-06解答题(中档题)知识点分类,共25页。试卷主要包含了0﹣sin30°,【算一算】,解方程,【材料阅读】等内容,欢迎下载使用。
这是一份江苏省镇江市5年(2018-2022)中考数学真题分类汇编-06解答题(基础题)知识点分类,共23页。试卷主要包含了﹣1﹣2cs60°;,﹣1﹣tan45°+|﹣1|;,0﹣2sin45°+;,0;,解方程等内容,欢迎下载使用。