所属成套资源:初一数学北师大版上册(秋季班)讲义
七年级上册6.1 数据的收集综合训练题
展开这是一份七年级上册6.1 数据的收集综合训练题,文件包含北师大版初一数学上册秋季班讲义第14讲数据的收集整理--提高班教师版docx、北师大版初一数学上册秋季班讲义第14讲数据的收集整理--提高班学生版docx等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。
第14讲 数据的收集、整理和描述
知识点1:普查和抽样调查
1. 普查和抽样调查
普查:为一特定目的而对所有考查对象所做的调查叫普查.
好处:调查结果准确;
缺点:花费多,工作量大,全面调查只在样本很少的情况下适合采用;
抽样调查:为一特定目的而对部分考查对象所做的调查叫做抽样调查.
好处:耗费的人力,物力,财力少,工作量小;
缺点:调查结果不如普查精确,受样本容量大小及其代表性影响较大;
2.总体、个体、样本、样本容量
总体:所考察对象的全体;
个体:组成总体的每一个考察对象;
样本:从总体重所抽取的一部分个体叫做总体的一个样本;
样本容量:样本中的个体数目;
【典例】
1.下列调查运用哪种调查方式合适?
(1)调查淮河流域的水污染情况;
(2)调查一个村庄所有家庭的年收入情况;
(3)调查某电视剧的收视率;
【方法总结】
适合采用普查方式的调查:
(1)调查结果要求非常准确;
(2)所要调查的个体数量少、调查难度相对不大;
(3)调查无破坏性;
适合采用抽样调查方式的调查:
(1)对调查得结果要求不是十分准确;
(2)调查具有破坏性;
(3)调查的问题所包含的个体数量较多;
(4)调查时间和经费有限,全面调查受到限制;
2.请指出下列抽样凋查中的总体、个体、样本和样本容量.
为了解某所学校的学生参加课外体育活动的情况,调查了其中20名学生每天参加课外体育活动的时间;
【方法总结】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
3.某池塘里养了鱼苗1万条,根据这几年的经验,鱼苗成活率为95%,一段时间后准备打捞出售,第一网捞出40条,称得平均每条鱼重2.5千克,第二网捞出25条,称得平均每条鱼重2.2千克,第三网捞出35条,称得平均每条鱼重2.8千克,试估计这池塘中鱼的质量.
【方法总结】
用样本估计总体时,样本容量越大,越具有代表性,对总体的估计也就越精确.
用样本估计总体,样本选取合适的情况下,
(1)样本平均数=总体平均数.
(2)样本中某一项占样本的比重=总体中该项占总体的比重
本题计算池塘中鱼的总质量可以用抽样方法估算出每条鱼的质量乘以总数即可.
【随堂练习】
1.(2018•邵阳)某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为______人.
2.(2017•海淀区一模)某校八年级共有8个班,241名同学,历史老师为了了解新中考模式下该校八年级学生选修历史学科的意向,请小红,小亮,小军三位同学分别进行抽样调查.三位同学调查结果反馈如下:
小红、小亮和小军三人中,你认为哪位同学的调查结果较好地反映了该校八年级同学选修历史的意向,请说出理由,并由此估计全年级有意向选修历史的同学的人数.
知识点2:统计图的选用
常见的统计图有:扇形统计图、条形统计图和折线统计图.
扇形统计图用圆中各扇形的面积描述各统计项目占总体的百分比;
条形统计图用宽度相同的“条形”的高度描述各统计项目的数据;
折线统计图用折线描述数据的变化过程和趋势.
扇形统计图中,扇形的圆心角=该统计项目占总体的百分比×360°.
在选择制作统计图时,需要根据了解的情况而定:
若要清楚地表示出各统计项目在总体重所占的百分比,则选择扇形统计图;
若要清楚地反映数据的变化过程和趋势,则选择折线统计图;
若要清楚地表示出每个统计项目的具体数据,则选择条形统计图.
【典例】
1.全民健身运动已成为一种时尚,为了了解我市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.
以下是根据调查结果绘制的统计图表的一部分.
请你根据以上信息,回答下列问题:
(1)接受问卷调查的共有______人,图表中的m=______,n=______;
(2)统计图中,A类所对应的扇形圆心角的度数为______;
(3)根据调查结果,我市市民最喜爱的运动方式是______,不运动的市民所占的百分比是______;
(4)我市碧沙岗公园是附近市民喜爱的运动场所之一,每晚都有“暴走团”活动,若最邻近的某社区约有1500人,那么估计一下该社区参加碧沙岗“暴走团”的大约有多少人?
【方法总结】
本题主要考查扇形统计图与统计表的综合计算.根据公式总体=选取部分数量÷所占比例以及变形便可得出第(1)(3)问;根据公式扇形的圆心角=该统计项目占总体的百分比×360°便可计算得出第(2)问;根据用样本估计总体的方法,样本当中该项目占样本容量的百分比与总体中该项目数量占总体的百分比相等即可求出第(4)问.
2.某中学为了解本校学生对球类运动的爱好情况,采用抽样的方法,从乒乓球、羽毛球、篮球和排球四个方面调查了若干名学生,在还没有绘制成功的“折线统计图”与“扇形统计图”中,请你根据已提供的部分信息解析下列问题.
(1)在这次调查活动中,一共调查了________名学生.
(2)“羽毛球”所在的扇形的圆心角是________度.
(3)请补全折线统计图;
(4)若该校有学生1200名,估计爱好乒乓球运动的约有多少名学生?
【方法总结】
本题主要考查扇形图与折线图的综合运用,解题关键在于扇形统计图各部分(项目)与折线图的对应.同一个部分用折线图给出的数据除以扇形图的比例即可算出调查的总体或者样本容量;用扇形统计图某个项目的比例乘以360°即可计算出所对应的圆心角度数;某一个项目在样本中所占的比例等于在总体中所占的比例.
【随堂练习】
1.(2018•衢州)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查.结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.
(1)被随机抽取的学生共有多少名?
(2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;
(3)该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?
2.(2018•苏州)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:
(1)求参加这次调查的学生人数,并补全条形统计图;
(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;
(3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?
知识点3:频数和频率
频数:某个对象出现的次数称为该对象的频数,各频数之和为试验的总次数.
频率:频数与总次数的比值称为频率.
【典例】
【选择题】
【题干】袋子里有4个黑球,m个白球,它们除颜色外都相同,经过大量实验,从中任取一个球恰好是白球的频率是0.20,则m的值是____
【随堂练习】
1.(2018•徐州一模)袋子里有4个黑球,m个白球,它们除颜色外都相同,经过大量实验,从中任取一个球恰好是白球的频率是0.20,则m的值是( )
A.1 B.2 C.4 D.16
2.(2018•贵阳)某班50名学生在2018年适应性考试中,数学成绩在100〜110分这个分数段的频率为0.2,则该班在这个分数段的学生为_____ 人.
知识点4:频数分布表和频数分布直方图
1.频数分布表
(1)在统计数据时,经常把数据按照不同的范围分成几个组,分成的组的个数称为组数,每一组两个端点的差称为组距,称这样画出的统计图表为频数分布表.
(2)列频数分布表的步骤:
①计算极差,即计算最大值与最小值的差.
②决定组距与组数(一般100以内的数据分成5~12组).
③决定分点,常使分点比数据多一位小数,并且把第一组的起点稍微减小一些.
④列频数分布表.
组数的决定方法:设数据总数目为n,一般地,当n≤50时,分为5~8组;当50≤n≤100时,则分为8~12组.
分点的决定方法:若数据为整数,则分点数据减去0.5;若数据是保留小数点后的一位数,则分点数据减去0.05.
2.频数分布直方图
画出频数分布表以后,构造一个坐标系,用横轴表示各组数据,纵轴表示频数,以该组内的频数为高,组距为宽,画一个长方形,每组两端的数据也可以用中位数来代替.各小组的频数之和等于数据总数.
【典例】
1.一组数据的最大值与最小值的差为80,若确定组距为9,则分成的组数为_____
【方法总结】
根据组数=(最大值﹣最小值)÷组距计算,注意小数部分要进位.
2.某校从初二年级抽出40名女生的身高数据,分组整理出如下频数分布表:
表中a,b,c分别是( )
【随堂练习】
1.(2018春•怀远县期末)一个容量为70的样本,最大值是130,最小值为50,取组距为10,则可以分( )
A.10组 B.9组 C.8组 D.7组
2.(2018春•高新区期末)随着移动终端设备的升级换代,手机己经成为我们生活中不可缺少的一部分,为了解中学生在假期使用
手机的情况(选项:A.和同学亲友聊天;B.学习;C.购物;D.游戏;E.其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到如右表格(部分信息未给出):
根据以上信息解答下列问题:
选项 | 频数 | 频率 |
A | 10 | M |
B | N | 0.2 |
C | 5 | 0.1 |
D | P | 0.4 |
E | 5 | 0.1 |
(1)这次被调查的学生有多少人?
(2)求表中m,n的值;
(3)若该中学有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?
综合运用
1.空气使由多种气体混合而成,为了简明扼要地说明空气的组成情况,最好用 ___________统计图.
2.为了解植物园内某种花卉的生长情况,在一片约有3000株此类花卉的园地内,随机抽测了200株的高度作为样本,统计结果整理后列表如下:(每组数据可包括最低值,不包括最高值)
试估计该园地内此类花卉高度小于55厘米且不小于45厘米的约为_________株.
3.某中学抽取部分学生对“你最喜欢的球类运动”调查问卷,收集整理数据后列频数频率分布表(部分)如下(其中m,n为已知数):
则mn的值为_________.
3.如图,为了解全校300名男生的身高情况,随机抽取若干男生进行身高测量,将所得数据(精确到1cm)整理画出频数分布直方图(每组数据含最低值,不含最高值),估计该校男生的身高在170cm﹣175cm之间的人数约有_________人.
4.指出下列调查中的总体、个体、样本和样本容量.
从学校七年级中抽取30名学生,调查学校七年级学生每周用于做数学作业的时间.
5.某学校为了解本校八年级学生生物考试测试情况,随机抽取了本校八年级部分学生的生物测试成绩为样本,按A(优秀)、B(良好)、C(合格)、D(不合格)四个等级进行统计,并将统计结果绘制成如下统计图表.请你结合图表中所给信息解析下列问题:
(1)请将上面表格中缺少的数据补充完整;
(2)扇形统计图中“A”部分所对应的圆心角的度数是___________;
(3)该校八年级共有1200名学生参加了身体素质测试,试估计测试成绩合格以上(含合格)的人数.
6.网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,绘制出以下两幅统计图.
请根据图中的信息,回答下列问题:
(1)这次抽样调查中共调查了___________人;
(2)请补全条形统计图;
(3)扇形统计图中18﹣23岁部分的圆心角的度数是___________;
(4)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数.
7.下列图表是2017年某校从参加中考体育测试的九年级学生中随机调查的10名男生跑1000米和10名女生跑800米的成绩.
(1)按规定,女生跑800米的时间不超过3'24“就可以得满分.该校九年级学生有490人,男生比女生少70人.请你根据上面成绩,估计该校女生中有多少人该项测试成绩得满分?
(2)假如男生1号和男生10号被分在同组测试,请答案他俩在400米的环形跑道测试的过程中能否相遇.若能,求出发多长时间才能相遇;若不能,说明理由.
8.为给研究制定《中考改革实施方案》提出合理化建议,教研人员对九年级学生进行了随机抽样调查,要求被抽查的学生从物理、化学、政治、历史、生物和地理这六个选考科目中,挑选出一科作为自己的首选科目,将调查数据汇总整理后,绘制出了如图的两幅不完整的统计图,请你根据图中信息解析下列问题:
(1)被抽查的学生共有多少人?
(2)将折线统计图补充完整;
(3)我市现有九年级学生约40000人,请你估计首选科目是物理的人数.
9.某校组织九年级学生参加汉字听写大赛,并随机抽取部分学生成绩作为样本进行答案,绘制成如下的统计表:
九年级抽取部分学生成绩的频率分布表
请根据所给信息,解析下列问题:
(1)a=_________,b=_________;
(2)请补全频数分布直方图;
(3)已知该年级有400名学生参加这次比赛,若成绩在90分以上(含90分)的为优,估计该年级成绩为优的有多少人?
相关试卷
这是一份初中数学北师大版七年级上册4.1 线段、射线、直线课后作业题,文件包含北师大版初一数学上册秋季班讲义第9讲与线段有关的计算--提高班教师版docx、北师大版初一数学上册秋季班讲义第9讲与线段有关的计算--提高班学生版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
这是一份初中数学北师大版七年级上册第三章 整式及其加减3.5 探索与表达规律当堂检测题,文件包含北师大版初一数学上册秋季班讲义第8讲规律探索--提高班教师版docx、北师大版初一数学上册秋季班讲义第8讲规律探索--提高班学生版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
这是一份数学七年级上册2.9 有理数的乘方当堂达标检测题,文件包含北师大版初一数学上册秋季班讲义第15讲幂的运算--提高班教师版docx、北师大版初一数学上册秋季班讲义第15讲幂的运算--提高班学生版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。