|试卷下载
搜索
    上传资料 赚现金
    人教版数学九年级上册同步讲义第27课正多边形和圆(教师版)
    立即下载
    加入资料篮
    人教版数学九年级上册同步讲义第27课正多边形和圆(教师版)01
    人教版数学九年级上册同步讲义第27课正多边形和圆(教师版)02
    人教版数学九年级上册同步讲义第27课正多边形和圆(教师版)03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版数学九年级上册同步讲义第27课正多边形和圆(教师版)

    展开
    这是一份人教版数学九年级上册同步讲义第27课正多边形和圆(教师版),共26页。

    27  正多边形和圆

    课程标准

    1.了解正多边形和圆的有关概念及对称性;

    2.理解并掌握正多边形半径和边长、边心距、中心角之间的关系,会应用正多边形和圆的有关知识画正多边形;

    3.会进行正多边形的有关计算.

    知识点01  正多边形的概念

    各边相等,各角也相等的多边形是正多边形.
    要点诠释:
      判断一个多边形是否是正多边形,必须满足两个条件:

    (1)各边相等;

    (2)各角相等;缺一不可.

    如菱形的各边都相等,矩形的各角都相等,但它们都不是正多边形(正方形是正多边形).
     

    知识点02  正多边形的重要元素

    1.正多边形的外接圆和圆的内接正多边形
      正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.

    2.正多边形的有关概念
      (1)一个正多边形的外接圆的圆心叫做这个正多边形的中心
      (2)正多边形外接圆的半径叫做正多边形的半径
      (3)正多边形每一边所对的圆心角叫做正多边形的中心角
      (4)正多边形的中心到正多边形的一边的距离叫做正多边形的边心距

    3.正多边形的有关计算
      (1)正n边形每一个内角的度数是
      (2)正n边形每个中心角的度数是
      (3)正n边形每个外角的度数是.

    要点诠释:

    要熟悉正多边形的基本概念和基本图形,将待解决的问题转化为直角三角形.
    知识点02  正多边形的性质

    1.正多边形都只有一个外接圆,圆有无数个内接正多边形.
      2.正n边形的半径和边心距把正n边形分成2n个全等的直角三角形.
      3.正多边形都是轴对称图形,对称轴的条数与它的边数相同,每条对称轴都通过正n边形的中心;

    当边数是偶数时,它也是中心对称图形,它的中心就是对称中心.

    4.边数相同的正多边形相似。它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方.

    5.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
    要点诠释:

    (1)各边相等的圆的内接多边形是圆的内接正多边形;

    (2)各角相等的圆的外切多边形是圆的外切正多边形.

    知识点03  正多边形的画法

    1.用量角器等分圆
      由于在同圆中相等的圆心角所对的弧也相等,因此作相等的圆心角(即等分顶点在圆心的周角)可以等分圆;根据同圆中相等弧所对的相等,依次连接各分点就可画出相应的正n边形.
     

    2.用尺规等分圆
      对于一些特殊的正n边形,可以用圆规和直尺作图.
       正四、八边形.
      
      在O中,用尺规作两条互相垂直的直径就可把圆分成4等份,从而作出正四边形. 再逐次平分各边所对的弧(即作AOB的平分线交于E) 就可作出正八边形、正十六边形等,边数逐次倍增的正多边形.
      正六、三、十二边形的作法.
      
      通过简单计算可知,正六边形的边长与其半径相等,所以,在O中,任画一条直径AB,分别以A、B为圆心,以O的半径为半径画弧与O相交于C、D和E、F,则A、C、E、B、F、D是O的6等分点.
      显然,A、E、F(或C、B、D)是O的3等分点.
      同样,在图(3)中平分每条边所对的弧,就可把O 12等分…….
    要点诠释:

    画正n边形的方法:(1)将一个圆n等份,(2)顺次连结各等分点.

    考法01   正多边形的概念

    【典例1】如图所示,正五边形的对角线AC和BE相交于点M.

    (1)求证:ACED;(2)求证:ME=AE.

    解析与答案】

     (1)正多边形必有外接圆,作出正五边形的外接O,则的度数为

      EAC的度数等于的度数的一半,

      EAC=

    同理,AED=×72°×3=108°

      EAC+AED=180°

      EDAC.

    (2)  EMA=180-AEB-EAC=72°

      EAM=EMA=72°

      EA=EM.

    点评辅助圆是特殊的辅助线,一般用得很少,当有共圆条件时可作出辅助圆后利用圆的特殊性去解决直线型的问题.要证ACED和ME=AE,都可用角的关系去证,而如果作出正五边形的外接圆,则用圆中角的关系去证比较容易.

    【典例2】如图,正方形ABCD内接于OEDC的中点,直线BEO于点F,若O的半径为,则BF的长为        

    【答案】.

    解析解:连接BDDF,过点CCNBF于点F

    正方形ABCD内接于OO的半径为

    BD=2

    AD=AB=BC=CD=2

    EDC的中点,

    CE=1

    BE=

    CN×BE=EC×BC

    CN×=2

    CN=

    BN=

    EN=BEBN==

    BDO的直径,

    ∴∠BFD=90°

    ∴△CEN≌△DEF

    EF=EN

    BF=BE+EF=+=

    故答案为

    点评此题主要考查了正多边形和圆以及勾股定理以及三角形面积等知识,根据圆周角定理得出正多边形边长是解题关键.

    即学即练1同一个圆的内接正六边形和外切正六边形的周长的比等于(  )

    A.3:4         B.:2       C.2:      D.1:2

    答案B;

    解析设圆的半径为1,如图(1),连接OA、OB过O作OGAB;


    六边形ABCDE为正六边形,
    ∴∠AOB==60°;
    OA=OB,OGAB,
    ∴∠AOG==30°,
    AG=OA•sin30°=1×=(或由勾股定理求)
    AB=2AG=2×=1,
    C六边形ABCD=6AB=6.
    如图(2)连接OA、OB过O作OGAB;
    六边形ABCDE为正六边形,
    ∴∠AOB==60°,
    OA=OB,OFAB,
    ∴∠AOF==30°,
    AG=OG•tan30°=(或由勾股定理求)
    AB=2AG=2×=
    C六边形ABCD=6AB=6×=4cm.
    圆的内接正六边形和外切正六边形的周长的比=6:4=:2.

    考法02   正多边形和圆的有关计算

    【典例3】如图,AG是正八边形ABCDEFGH的一条对角线.

    1)在剩余的顶点BCDEFH中,连接两个顶点,使连接的线段与AG平行,并说明理由;

    2)两边延长ABCDEFGH,使延长线分别交于点PQMN,若AB=2,求四边形PQMN的面积.

    答案与解析

    解:(1)连接BF,则有BFAG

    理由如下:

    ABCDEFGH是正八边形,

    它的内角都为135°

    HA=HG

    ∴∠1=22.5°

    从而2=135°﹣∠1=112.5°

    由于正八边形ABCDEFGH关于直线BF对称,

    2+3=180°,故BFAG

    2)根据题设可知PHA=PAH=45°

    ∴∠P=90°,同理可得Q=M=90°

    四边形PQMN是矩形.

    ∵∠PHA=PAH=QBC=QCB=MDE=MED=45°AH=BC=DE

    ∴△PAH≌△QCB≌△MDE

    PA=QB=QC=MD.即PQ=QM

    故四边形PQMN是正方形.

    RtPAH中,∵∠PAH=45°AH=2

    PA=

    点评此题主要考查了正多边形和圆以及全等三角形的判定与性质等知识,得出PQ的长是解题关键.

    【典例4】如图所示,圆内接ABC中,AB=BC=CA,OD、OE为O的半径,ODBC于点F,OEAC于点G,求证:阴影部分四边形OFCG的面积是ABC的面积的

    【答案与解析

    (1)连OA、OB、OC,如图(2)所示,

      图(2)

    则OA=OB=OC,又AB=BC=CA.  OAB≌△OBC≌△OCA,

    又ODBC于F,OEAC于G,由垂径定理得AG=AC,FC=BC,

      AG=CF.  RtAOGRtCOF

                  

    点评首先连接OC,根据垂径定理的知识,易证得RtOCGRtOCF,设OG=a,根据直角三角形的

    性质与等边三角形的知识,即可求得阴影部分四边形OFCG的面积与ABC的面积,继而求得答案.

    即学即练2如下图,若DOE保持120°角度不变,求证:当DOE绕着O点旋转时,由两条半径和ABC的两条边围成的图形,图中阴影部分的面积始终是ABC的面积的

    【答案】连接OA、OB、OC,由(1)知OAB≌△OBC≌△OCA.

      1=2.

    设OD交BC于F,OE交AC于G,则AOC=3+4=120°

    DOE=5+4=120°  3=5.

    OAG和OCF中  OAG≌△OCF.

     

    题组A  基础过关练

    1.若一个正多边形的一个内角是120°,则这个正多边形的边数是(   

    A9             B8               C6              D4

    【答案】C

    【解析】

    多边形的内角和可以表示成(n-2×180°,因为所给多边形的每个内角均相等,故又可表示成120°n,列方程可求解。此题还可以由已知条件,求出这个多边形的外角,再利用多边形的外角和定理求解。
    解法一:设所求正n边形边数为n
    120°n=n-2×180°
    解得n=6
    解法二:设所求正n边形边数为n
    n边形的每个内角都等于120°
    n边形的每个外角都等于180°-120°=60°
    又因为多边形的外角和为360°
    60°×n=360°
    n=6
    故选C

    2.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是(  )

    A2 cm Bcm C cm D1cm

    【答案】A

    【分析】

    根据正六边形的内角度数可得出130°,再通过解直角三角形即可得出a的值,进而可求出a的值,此题得解.

    【详解】

    如图:正六边形的任一内角为120°

    ∴∠130°

    a2cos1

    a2

    故选:A

    【点睛】

    本题考查了正多边形以及解直角三角形,牢记正多边形的内角度数是解题的关键.

    3.已知圆的半径是,则该圆的内接正六边形的面积是( )

    A B C D

    【答案】C

    【详解】

    试题分析:连接正六边形的中心与各个顶点,得到六个等边三角形,等边三角形的边长是2,高为3

    因而等边三角形的面积是3正六边形的面积=18,故选C

    【考点】正多边形和圆.

    4.中华人民共和国国旗上的五角星,它的五个锐角的度数和是(    

    A50° B100° C180° D200°

    【答案】C

    【解析】

    如图,

    ∵∠1=C+E2=B+D1+2+A=180°

    ∴∠C+E+B+D+A=180°

    即五角星五个锐角的度数和是180°.

    故选C

    5.将边长为3cm的正三角形的各边三等分,以这六个分点为顶点构成一个正六边形,再顺次连接这个正六边形的各边中点,又形成一个新的正六边形,则这个新的正六边形的面积等于(  )

    Acm2 Bcm2 Ccm2 Dcm2

    【答案】B

    【解析】

    【分析】

    可画出草图解题,新的正六边形有三个顶点在正三角形的三边上,且是三边的中点,连接正三角形的顶点与它对边的中点,可以看出新的正六边形的面积六个小正三角形的面积之和.

    【详解】

    解:新的正六边形有三个顶点在正三角形的三边上,且是三边的中点,

    连接AHCFBN,可以看出新的正六边形EFGHMN的面积是六个小正三角形的面积之和,

    小正三角形的边长为cm

    每个小正三角形的面积是cm2

    新的正六边形的面积等于×6

    故选:B

    【点睛】

    此题主要考查了正三角形的性质及三角形的面积公式.

    6.如图,在PQRO的内接三角形,四边形ABCDO的内接正方形,BCQR,则AOR=( )

    A60°    B65°    C72°    D75°

    【答案】D

    【解析】

    试题分析:作辅助线连接OD,根据题意求出POQAOD的,利用平行关系求出AOP度数,即可求出AOQ的度数.

    连接ODAR

    ∵△PQRO的内接正三角形,

    ∴∠PRQ=60°

    ∴∠POQ=2×PRQ=120°

    四边形ABCDO的内接正方形,

    ∴△AOD为等腰直角三角形,

    ∴∠AOD=90°

    BCRQADBC

    ADQR

    ∴∠ARQ=DAR

    ∵△PQR是等边三角形,

    PQ=PR

    ∴∠AOP=AOD=45°

    所以AOQ=POQ-AOP=120°-45°=75°

    故选D

    考点: 正多边形和圆.

    7.已知等边三角形的内切圆半径,外接圆半径和高的比是(  )

    A12 B234 C12 D123

    【答案】D

    【解析】

    试题分析:图中内切圆半径是OD,外接圆的半径是OC,高是AD,因而AD=OC+OD

    在直角OCD中,DOC=60°,则ODOC=12,因而ODOCAD=123

    所以内切圆半径,外接圆半径和高的比是123.故选D

    考点:正多边形和圆.

    题组B  能力提升练

    1.正六边形的外接圆的半径与内切圆的半径之比为_____

    【答案】2

    【分析】

    从内切圆的圆心和外接圆的圆心向三角形的边长引垂线,构建直角三角形,解三角形即可.

    【详解】

    解:设正六边形的半径是r

    则外接圆的半径r

    内切圆的半径是正六边形的边心距,因而是r

    因而正六边形的外接圆的半径与内切圆的半径之比为2

    故答案为2

    【点睛】

    考查了正多边形和圆,正多边形的计算一般是通过中心作边的垂线,连接半径,把正多边形中的半径,边长,边心距,中心角之间的计算转化为解直角三角形.

    2.半径相等的圆内接正三角形、正方形、正六边形的边长之比为________

    【答案】

    【解析】

    【分析】

    根据题意画出图形,设出圆的半径,再由正多边形及直角三角形的性质求解即可.

    【详解】

    设圆的半径为R 
    如图(一), 
    连接OB,过OODBCD 
    OBC=30°BD=OBcos30°= R 
    BC=2BD=R 
    如图(二), 
    连接OBOC,过OOEBCE 
    OBE是等腰直角三角形, 
    2BE2=OB2,即BE=  
    BC= R 
    如图(三), 
    连接OAOB,过OOGAB 
    OAB是等边三角形, 
    AG=OAcos60°= RAB=2AG=R 
    故圆内接正三角形、正方形、正六边形的边长之比为RRR= 1 
     

    【点睛】

    本题考查了圆内接正三角形、正方形及正六边形的性质,根据题意画出图形,作出辅助线构造出直角三角形是解答此题的关键.

    3.如图,有一圆内接正八边形ABCDEFGH,若ADE的面积为10,则这个正八边形的面积为      

    【答案】40

    【解析】取AE中点I

    则点I为圆的圆心,圆内接正八边形ABCDEFGH是由8个与IDE全等的三角形构成.易得IDE的面积为5,则圆内接正八边形ABCDEFGH8×5=40

    4.如图,正六边形内接于圆O,圆O的半径为10,则图中阴影部分的面积为_________.

    【答案】100-150

    【分析】

    此题是考查圆与正多边形结合的基本运算.阴影面积=总体面积-空白部分的面积.

    【详解】

    已知圆的半径为10,则面积为,空白正六边形为六个边长为2的正三角形,每个三角形面积为,则正六边形面积为,所以阴影面积为

    故答案为:

    5.如图,已知正六边形 ABCDEF 的边长是 5,点 P AD 上的一动点,则 PE+PF 的最小值是_____

    【答案】10

    【解析】

    利用正多边形的性质,可得点B关于AD对称的点为点E,连接BEADP点,那么有PB=PFPE+PF=BE最小,根据正六边形的性质可知三角形APB是等边三角形,因此可知BE的长为10,即PE+PF的最小值为10.

    故答案为10.

    6.如图,有一个圆O和两个正六边形T1T2T16个顶点都在圆周上,T26条边都和圆O相切(我们称T1T2分别为圆O的内接正六边形和外切正六边形).若设T1T2的边长分别为ab,圆O的半径为r,则ra=____rb=____;正六边形T1T2的面积比S1S2的值是____ 

    【答案】11    2    34   

    【分析】

    根据圆内接正六边形的边长等于它的半径可得ra比值,在由圆的半径和正六边形的半边及正六边形对角线的一半组成的直角三角形中,根据锐角三角函数即可求得rb的比值;根据相似多边形的面积比是相似比的平方,由rarb 可求ab,继而即可求解.

    【详解】

    连接OEOGOF

    EF=aT1为正六边形,

    ∴△OEF为等边三角形,OE为圆O的半径r

    ar=11,即ra=11

    由题意可知:OGFOE的平分线,即EOG=EOF=30°

    RtOEG中,OE=rOG=b

    ==cosEOG=cos30°,即=

    rb=2

    ①②得,ab=2,且两个正六边形T1T2相似,

    S1S2=a2b2=34

    故答案为:11234

    【点睛】

    本题考查正多边形与圆的有关知识,解题的关键是学会构造由正多边形半径,边心距、半边组成的直角三角形,掌握锐角三角函数,注意相似多边形的面积比即是相似比的平方.

    7.如图,在边长为3的正方形ABCD中,圆O1与圆O2外切,且圆O1分别与DADC边相切,圆O2分别与BABC边相切,则圆心距O1O2_____

    【答案】

    【详解】

    连接BD,则圆心O1O2BD上,设P与正方形的切点为HG

    设圆O1的半径为R,圆O2的半径为r

    O1分别与DADC边相切,O1GADO1HDC

    O1G= O1H=R四边形GO1HD为正方形.

    同理,

    AB=AD=3cm

    DO1+ O1O2+BO2=BD=,即:

    圆心距O1O2

    题组C  培优拔尖练

    1.如图,正六边形的边长为,点为六边形内任一点.则点到各边距离之和是多少?

    【答案】18.

    【分析】

    PAB的垂线,交ABDE分别为HK,连接BD,由正六边形的性质可求出BD的长,而点PAFCD的距离之和,PEFBC的距离之和均为BD的长,据此得出结论.

    【详解】

    解:过PAB的垂线,分别交ABDEHK,连接BD,作CGBDG

    六边形ABCDEF是正六边形,ABDEAFCDBCEF,且PAFCD的距离之和,及PEFBC的距离之和均为HK的长.

    BC=CDBCD=ABC=CDE=120°∴∠CBD=BDC=30°∴∠DBH=120°30°=90°BDHK,且BD=HK

    CGBDBD=2BG=2×BC×cosCBD=2×2×=6P到各边距离之和=3BD=3×6=18

    【点睛】

    本题主要考查的是正多边形及锐角三角函数的定义、特殊角的三角函数值,根据题意画出图形,利用数形结合思想求解是解答此题的关键.

    2.如图,为等边的外接圆,半径为2,点在劣弧上运动(不与点重合),连接

    1)求证:的平分线;

    2)四边形的面积是线段的长的函数吗?如果是,求出函数解析式;如果不是,请说明理由;

    3)若点分别在线段上运动(不含端点),经过探究发现,点运动到每一个确定的位置,的周长有最小值,随着点的运动,的值会发生变化,求所有值中的最大值.

    【答案】(1)详见解析;(2)是, (3)

    【分析】

    (1)根据等弧对等角的性质证明即可;

    (2)延长DAE,AE=DB,证明EAC≌△DBC,即可表示出S的面积;

    (3)作点D关于直线BCAC的对称点D1D2,当D1MND共线时DMN取最小值,可得t=D1D2,有对称性推出在等腰D1CD2,t=DOC共线时t取最大值即可算出.

    【详解】

    (1)∵△ABC为等边三角形,BC=AC

    ,都为圆,

    ∴∠AOC=BOC=120°

    ∴∠ADC=BDC=60°

    DCADB的角平分线.

    (2)是.

    如图,延长DA至点E,使得AE=DB

    连接EC,则EAC=180°DACDBC

    AEDBEACDBC,ACBC

    ∴△EAC≌△DBC(SAS)

    ∴∠E=CDB=ADC=60°

    EDC是等边三角形,

    DC=x根据等边三角形的特殊性可知DC边上的高为

    (3)依次作点D关于直线BCAC的对称点D1D2,根据对称性

    CDMN=DM+MN+ND=D1M+MN+ND2

    D1MND共线时DMN取最小值t,此时t=D1D2,

    由对称有D1C=DC=D2C=xD1CB=DCBD2CA=DCA,

    ∴∠D1CD2=D1CB+BCA+D2CA=DCB+60°+DCA=120°

    ∴∠CD1D2=CD2D1=60°

    在等腰D1CD2,CHD1D2

    则在RtD1CH中,根据30°特殊直角三角形的比例可得D1H=

    同理D2H=

    t=D1D2=

    x取最大值时,t取最大值.

    DOC共线时t取最大值,x=4

    所有t值中的最大值为

    【点睛】

    本题考查圆与正多边形的综合以及动点问题,关键在于结合题意作出合理的辅助线转移已知量.

    3.(本小题满分12分 )如图,正三角形ABC、正方形ABCD、正五边形ABCDE分别是O的内接三角形、内接四边形、内接五边形,点MN分别从点BC开始,以相同的速度在O上逆时针运动.

    1)求图APN的度数(写出解题过程);

    2)写出图APN的度数和图 APN的度数                                             

    3)试探索APN的度数与正多边形边数n的关系(直接写答案)

    【答案】(160°;(2APN的度数为108°;(3APN的度数为(n-2*180/n°

    【解析】

    试题分析:

    试题解析:(1APN = 60°.

    因为APN=ABP+BAP

    有因为点MN以相同的速度中O上逆时针运动.

    所以弧AN=CM ABN=MAC

    所以APN=BAP+MAC

    APN=BAC=60°

    (2)按(1)的思路可得:图2中,APN的度数为90°;图3中,APN的度数为108°

    (3)则APN的度数=所在多边形的内角度数=(n-2*180/n°

    考点: 1.正多边形和圆;2.三角形的外接圆与外心

    4.阅读下列材料:

    已知:如图1,等边A1A2A3内接于O,点P上的任意一点,连接PA1PA2PA3,可证:PA1+PA2=PA3,从而得到:是定值.

    1)以下是小红的一种证明方法,请在方框内将证明过程补充完整;

    证明:如图1,作PA1M=60°A1MA2P的延长线于点M

    ∵△A1A2A3是等边三角形,

    ∴∠A3A1A2=60°

    ∴∠A3A1P=A2A1M

    A3A1=A2A1A1A3P=A1A2P

    ∴△A1A3P≌△A1A2M

    PA3=MA2=PA2+PM=PA2+PA1

    ,是定值.

    2)延伸:如图2,把(1)中条件等边A1A2A3改为正方形A1A2A3A4,其余条件不变,请问:还是定值吗?为什么?

    3)拓展:如图3,把(1)中条件等边A1A2A3改为正五边形A1A2A3A4A5,其余条件不变,则=    (只写出结果).

    【答案】(1)证明见解析;(2)是定值,理由见解析;(3

    【详解】

    分析:(2)结论:是定值.在A4P上截取AH=A2P,连接HA1.证明PA4=A4+PH=PA2+PA1,同法可证:PA3=PA1+PA2,推出(+1)(PA1+PA2=PA3+PA4,可得PA1+PA2=-1)(PA3+PA4),即可解决问题;

    3)结论:则.如图3-1中,延长PA1H,使得A1H=PA2,连接A4HA4A2A4A1.由HA4A1≌△PA4A2,可得A4HP是顶角为36°的等腰三角形,推出PH=PA4,即PA1+PA2=PA4,如图3-2中,延长PA5H,使得A5H=PA3.同法可证:A4HP是顶角为108°的等腰三角形,推出PH=PA4,即PA5+PA3=PA4,即可解决问题;

    详解:(1)如图1,作PA1M=60°A1MA2P的延长线于点M

    ∵△A1A2A3是等边三角形,

    ∴∠A3A1A2=60°

    ∴∠A3A1P=A2A1M

    A3A1=A2A1A1A3P=A1A2P

    ∴△A1A3P≌△A1A2M

    PA3=MA2

    PM=PA1

    PA3=MA2=PA2+PM=PA2+PA1

    ,是定值.

    2)结论:是定值.

    理由:在A4P上截取AH=A2P,连接HA1

    四边形A1A2A3A4是正方形,

    A4A1=A2A1

    ∵∠A1A4H=A1A2PA4H=A2P

    ∴△A1A4H=A1A2P

    A1H=PA1A4A1H=A2A1P

    ∴∠HA1P=A4A1A2=90°

    ∴△HA1P的等腰直角三角形,

    PA4=HA4+PH=PA2+PA1

    同法可证:PA3=PA1+PA2

    +1)(PA1+PA2=PA3+PA4

    PA1+PA2=-1)(PA3+PA4),

    3)结论:则

    理由:如图3-1中,延长PA1H,使得A1H=PA2,连接A4HA4A2A4A1

    HA4A1≌△PA4A2,可得A4HP是顶角为36°的等腰三角形,

    PH=PA4,即PA1+PA2=PA4

    如图3-2中,延长PA5H,使得A5H=PA3

    同法可证:A4HP是顶角为108°的等腰三角形,

    PH=PA4,即PA5+PA3=PA4

    点睛:本题考查圆综合题、正方形的性质、正五边形的性质、全等三角形的判定和性质等正整数,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map